Lectures on Superstring Amplitudes

Part 2: Superstrings

Eric D’Hoker
Mani L. Bhaumik Institute for Theoretical Physics
University of California, Los Angeles

Center for Quantum Mathematics and Physics - 2018
Amplitudes 2018 Summer School
Superstring Perturbation Theory

- **Theory of fluctuating random surfaces** (closed strings shown)

 - governed by topological expansion in the genus h weighed by g_s^{2h-2}

 \[
 g_s^{-2} + g_s^0 + g_s^2 + \cdots
 \]

- **Bosonic string**

 - unstable with closed string tachyon

 - Nature has fermions!

- **Superstrings generalize bosonic string**

 - they have fermions

 - no tachyon

 - supersymmetry
Approaches to Superstring Perturbation Theory

• Goal is to obtain superstring amplitudes at all genera
 – Ramond-Neveu-Schwarz formulation of fermionic strings; w/ Gliozzi-Scherk-Olive projection to supersymmetric spectrum;
 – Green-Schwarz space-time supersymmetric formulation;
 – Mandelstam light-cone formulation;
 – String field theory;
 – Topological string theory;
 – Berkovits pure spinor formulation.

• Different perturbative superstring theories (in 10 dimensions)
 – Type I open & closed, orientable & non-orientable, D-branes
 – Type IIA,B closed orientable, D-branes
 – Heterotic closed orientable $E_8 \times E_8, \text{Spin}(32/\mathbb{Z}_2)$

• Here: RNS formulation, closed orientable superstrings, dimension 10
Genus-zero four-graviton superstring amplitude

• Kinematics of the four-graviton amplitude
 – momenta of gravitons k_i^μ are conserved $\sum_i k_i^\mu = 0$
 – choose basis of factorized polarization tensors $\varepsilon_i^{\mu\nu} = \varepsilon_i^\mu \tilde{\varepsilon}_i^\nu$
 – masslessness $k_i^2 = 0$ and transversality $k_i^\mu \varepsilon_i^\mu = k_i^\mu \tilde{\varepsilon}_i^\mu = 0$ for $i = 1, 2, 3, 4$
 – kinematic invariants $s = s_{12} = s_{34}$, $t = s_{14} = s_{23}$, $u = s_{13} = s_{24}$

 $$s_{ij} = -\alpha'(k_i + k_j)^2/4$$

• Tree-level four-graviton amplitude is given by

$$A^{(0)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \frac{1}{g_s^2} \times \mathcal{K}\tilde{\mathcal{K}} \times \frac{1}{stu} \frac{\Gamma(1-s)\Gamma(1-t)\Gamma(1-u)}{\Gamma(1+s)\Gamma(1+t)\Gamma(1+u)}$$

 – Kinematical factor \mathcal{K} given in terms of $f_i^{\mu\nu} = k_i^\mu \varepsilon_i^\nu - k_i^\nu \varepsilon_i^\mu$ by

 $$\mathcal{K} = (f_1f_2)(f_3f_4) + (f_1f_3)(f_2f_4) + (f_1f_4)(f_2f_3) - 4(f_1f_2f_3f_4) - 4(f_1f_2f_4f_3) - 4(f_1f_3f_2f_4)$$

 – for $\tilde{\mathcal{K}}$ replace ε_i by $\tilde{\varepsilon}_i$

 – Equivalently, $\mathcal{K} \times \tilde{\mathcal{K}} = R^4$ with R the linearized Weyl tensor

 – String duality: symmetric in s, t, u

 – Poles in each channel, at $s, t, u = 0, 1, 2, \cdots$
Genus-one four-graviton superstring amplitude

- **Type II four-graviton amplitude to one-loop order** (Green, Schwarz 1982)

\[A^{(1)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \mathcal{R}^4 \int_{\mathcal{M}_1} \frac{d^2 \tau}{(\text{Im} \, \tau)^2} \mathcal{B}^{(1)}(s_{ij}|\tau) \]

- Partial amplitude \(\mathcal{B}^{(1)} \) is a modular function in \(\tau \in \mathcal{M}_1 = \mathcal{H}_1/SL(2, \mathbb{Z}) \)

\[\mathcal{B}^{(1)}(s_{ij}|\tau) = \int_{\Sigma^4} \prod_{i=1}^{4} \frac{d^2 z_i}{\text{Im} \, \tau} \exp \left(\sum_{i<j} s_{ij} G(z_i - z_j|\tau) \right) \]

- \(G(z|\tau) \) is the scalar Green function on the torus \(\Sigma \) of modulus \(\tau \).
- Analogous formulas for Heterotic strings and more external states.

- **Singularity structure**
 - For fixed \(\tau \) integrations over \(\Sigma \) produce poles in \(\mathcal{B}^{(1)} \) at positive integers \(s_{ij} \).
 - The integral over \(\tau \) converges absolutely only for \(\text{Re}(s_{ij}) = 0 \).
 - Analytic continuation to \(s_{ij} \in \mathbb{C} \) via decomposition of \(\mathcal{M}_1 \).
 - Branch cuts in \(s_{ij} \) starting at integers \(\geq 0 \) are produced by \(\tau \to i\infty \) region.
Loop momenta

- Loop momenta may be exposed
 - Choose a canonical basis of homology cycles \mathcal{A}, \mathcal{B}.
 - Choose loop momentum p flowing through the cycle \mathcal{A},
 \[\int_{M_1} \frac{d^2\tau}{(\text{Im}\,\tau)^2} \mathcal{B}^{(1)}(s_{ij}|\tau) = \int_{\mathbb{R}^{10}} d^{10}p \int_{M_1} \int_{\Sigma^4} |\mathcal{F}(z_i, k_i, p|\tau)|^2 \]

- Chiral amplitude \mathcal{F} is locally holomorphic in τ and z_i
 \[\mathcal{F}(z_i, k_i, p|\tau) = e^{i\pi p^2 + 2\pi ip \sum_i k_i z_i} \prod_{i<j} \vartheta_1(z_i - z_j|\tau)^{-s_{ij}} d\tau \prod_{i=1}^{4} d\bar{z}_i \]
 at the cost of non-trivial monodromy
 \[\mathcal{F}(z_i + \delta_{i,\ell} \mathcal{A}, k_i, p|\tau) = e^{2\pi ik_{\ell \cdot p}} \mathcal{F}(z_i, k_i, p|\tau) \]
 \[\mathcal{F}(z_i + \delta_{i,\ell} \mathcal{B}, k_i, p|\tau) = \mathcal{F}(z_i, k_i, p + k_{\ell}|\tau) \]

- Modular invariance of $\mathcal{A}^{(1)}$ guarantees independence of choices.
- Hermitian pairing of \mathcal{F} and $\bar{\mathcal{F}}$ is familiar from 2-d CFT where loop momentum p labels conformal blocks of 10 copies of $c = 1$.

UV-finiteness

- **Thanks to modular invariance, all string amplitudes are UV-finite**
 - shown for the closed bosonic string at genus one (Shapiro 1972)
 - holds for all modular invariant superstrings to all loops (i.e. all genera)

- **For genus-one: All chiral amplitudes have a universal factor**

 $$\mathcal{F}(z_i, \epsilon_i, k_i, p_I | \tau) = e^{ip\mu \tau \rho^\mu} \times \cdots$$

 - Modular invariance allows one to choose a fundamental domain where $\text{Im}(\tau)$ bounded from below

 $$\mathcal{H}_1/SL(2, \mathbb{Z}) = \{ \tau \in \mathbb{C}, \text{Im}(\tau) > 0, |\tau| \geq 1, |\text{Re}(\tau)| \leq \frac{1}{2} \}$$

 - Analogous, more complicated, choices to higher genus

 \Rightarrow **Uniform Gaussian suppression at large loop momenta**

 \Rightarrow **UV finiteness**
RNS formulation of superstrings

- $M = \mathbb{R}^{10}$ flat Minkowski space-time with Lorentz group $SO(1, 9)$
 - x^μ scalars on worldsheet Σ, map Σ into M
 - ψ^μ spinors on Σ but Lorentz vector under $SO(1, 9)$
 - Worldsheet supersymmetry $\implies \Sigma$ is a super Riemann surface
 - Two sectors: NS bosons $SO(1, 9)$-tensors
 - R fermions $SO(1, 9)$-spinors

- With Minkowski signature Σ
 - ψ^μ and $\tilde{\psi}^\mu$ are independent Majorana-Weyl spinors of opposite chirality

- With Euclidean signature Σ
 - ψ^μ and $\tilde{\psi}^\mu$ must be independent complex Weyl spinors
 - Globally, on a compact Riemann surface of genus h,
 - All ψ^μ are sections of a the same spin bundle S (and $\tilde{\psi}^\mu$ of \tilde{S})
 - 2^{2h} distinct spin structures for S (and 2^{2h} independently for \tilde{S})

- GSO projection requires independent summation over spin structures
Quantization of worldsheet spinor fields

- **Illustrate**
 - Ramond and Neveu-Schwarz sectors
 - independence of chiralities

- **Dirac action and equation for flat** $M = \mathbb{R}^{10}$ **with metric** η
 - All components of ψ^μ_+ are sections of the same spin bundle S
 - Complex structure J with local complex coordinates (z, \bar{z})
 - Dirac action,
 \[I_\psi[\psi, J] = \frac{1}{2\pi} \int_\Sigma d\bar{z}dz \psi^\mu_+ \partial_\bar{z} \psi^\nu_+ \eta_{\mu\nu} \]
 - Dirac equation $\partial_\bar{z} \psi^\mu_+ = 0$ has locally holomorphic solutions,
 - but products of operators produce singularities
 \[\psi^\mu_+(z) \psi^\nu_+(w) = \frac{\eta^\mu\nu}{z - w} + \text{regular} \]
 - each component ψ^μ generates a CFT with central charge $c = \frac{1}{2}$.

Quantization of worldsheet spinor fields (cont’d)

- **Quantization on flat cylinder or conformal equivalent flat annulus**
 - cylinder \(w = \tau + i\sigma \) with identification \(\sigma \approx \sigma + 2\pi \)
 - annulus centered at \(z = 0 \), conformally mapped by \(z = e^w \)
 - one-forms related by \(dz = e^w \, dw \), spinors by \((dz)^{1/2} = e^{w/2} (dw)^{1/2} \)
 - fields related by conformal transformation \(\psi_{\text{cyl}}(z) = e^{w/2} \psi_{\text{ann}}(w) \)

- **Two possible spin structures**
 - NS \(\psi^\mu_{\text{cyl}}(\tau, \sigma + 2\pi) = - \psi^\mu_{\text{cyl}}(\tau, \sigma) \) or \(\psi^\mu_{\text{ann}}(e^{2\pi i} \, z) = + \psi^\mu_{\text{ann}}(z) \)
 - R \(\psi^\mu_{\text{cyl}}(\tau, \sigma + 2\pi) = + \psi^\mu_{\text{cyl}}(\tau, \sigma) \) or \(\psi^\mu_{\text{ann}}(e^{2\pi i} \, z) = - \psi^\mu_{\text{ann}}(z) \)

- **Free field quantization in annulus representation**
 - NS \(\psi^\mu(z) = \sum_{r \in \frac{1}{2} + \mathbb{Z}} b^\mu_r \, z^{-\frac{1}{2} - r} \quad \{ b^\mu_r, b^\nu_s \} = \eta^{\mu\nu} \delta_{r+s,0} \)
 - R \(\psi^\mu(z) = \sum_{n \in \mathbb{Z}} d^\mu_n \, z^{-\frac{1}{2} - n} \quad \{ d^\mu_m, d^\nu_n \} = \eta^{\mu\nu} \delta_{m+n,0} \)
Quantization of worldsheet spinor fields (cont’d)

• Lorentz generators of $SO(1,9)$:

\[
[J^{\mu\nu}, \psi^\kappa(z)] = \eta^{\nu\kappa} \psi^\mu(z) - \eta^{\mu\kappa} \psi^\nu(z)
\]

\[
J_{NS}^{\mu\nu} = \sum_{r \in \mathbb{N} - \frac{1}{2}} \left(b_{-r}^\mu b_r^\nu - b_{-r}^\nu b_r^\mu \right)
\]

\[
J_R^{\mu\nu} = \frac{1}{2} [d_0^{\mu}, d_0^{\nu}] + \sum_{n \in \mathbb{N}} (d_{-n}^{\mu} d_n^{\nu} - d_{-n}^{\nu} d_n^{\mu})
\]

• Fock space construction produces two sectors

★ NS ground state defined by $b_r^\mu |0; NS\rangle = 0$ for all $r > 0$
 – $|0; NS\rangle$ is unique and in trivial representation of $SO(1,9)$
 – Fock space = linear combinations of $b_{-r_1}^{\mu_1} \cdots b_{-r_p}^{\mu_p} |0; NS\rangle$, $r_i > 0$
 – All states in tensor reps of $SO(1,9)$ are space-time bosons.

★ R ground state defined by $d_n^{\mu} |0, \alpha; R\rangle = 0$ for all $n > 0$
 – $|0, \alpha; R\rangle$ is degenerate and in spinor rep. of $SO(1,9)$, states labelled by α
 – Fock space = linear combinations of $d_{-n_1}^{\mu_1} \cdots d_{-n_p}^{\mu_p} |0, \alpha; R\rangle$, $n_i > 0$
 – All states in spinor reps of $SO(1,9)$ are space-time fermions.
Summation over spin structures

- Theory with bosons and fermions requires both NS and R sectors
 - to include both, one must sum over two spin structures of the annulus

- Type II spin structures of ψ^μ_{\pm} are independent of one another
 - space-time fermions are in the $R \otimes NS$ and $NS \otimes R$ sectors
 which could never arise if spin structures for opposite chiralities coincided

- On the torus, viewed as cylinder + identification
 - spin structures along cycle of cylinder produce R and NS sectors
 - sum over spin structures along conjugate cycle produces GSO-projection
 * reduces to half the states in both R and NS sectors
 * R-sector: space-time spinor of definite chirality
 * NS-sector: eliminates the tachyon
 \Rightarrow sum over all spin structures
Summation over spin structures (cont’d)

- Fix a canonical homology basis of cycles $\mathcal{A}_I, \mathcal{B}_I$ of $H_1(\Sigma, \mathbb{Z})$ $I = 1, \ldots, h$
 - with canonical intersection pairing
 $\#(\mathcal{A}_I, \mathcal{A}_J) = \#(\mathcal{B}_I, \mathcal{B}_J) = 0$ and $\#(\mathcal{A}_I, \mathcal{A}_J) = \delta_{IJ}$

- Transformations which maps one canonical basis into another
 - linear with integer coefficients
 - preserve the intersection matrix: $Sp(2h, \mathbb{Z})$

- On Riemann surface of higher genus h sum over all spin structures
 - along \mathcal{A}-cycles produces R and NS sectors
 - along \mathcal{B}-cycles produces GSO-projection
 - mapped into one another by $Sp(2h, \mathbb{Z}_2)$
Super Riemann surfaces

• **Ordinary Riemann surface** (locally \mathbb{C} with coordinate z)
 - complex manifold: holomorphic transition functions $z \to z'(z)$;
 - complex structure = conformal structure J
 - Moduli space $\mathcal{M}_h = \{J\}/\text{Diff}(\Sigma)$ of genus h compact Riemann surfaces

• **Complex super manifold** (locally $\mathbb{C}^{1|1}$ with coordinates $z|\theta$)
 - holó transition functions $z|\theta \to z'(z, \theta)|\theta'(z, \theta)$ generate $\mathcal{N} = 2$ super conformal

• **Super Riemann surface** (locally $\mathbb{C}^{1|1}$ with coordinates $z|\theta$)
 - holó transition functions $z|\theta \to z'|\theta'$ rescale $D\theta = \partial\theta + \theta\partial z$
 - Transition functions define $\mathcal{N} = 1$ superconformal structure \mathcal{J}
 - Globally: $T\Sigma$ has a completely non-integrable subbundle of rank $0|1$

• **Moduli space of compact super Riemann surfaces**: $\mathcal{M}_h = \{\mathcal{J}\}/\text{Diff}(\Sigma)$
 = equivalence classes of superconformal structures \mathcal{J}

 $$\dim_{\mathbb{C}} \mathcal{M}_h = \begin{cases}
 0|0 & h = 0 \\
 1|0 \text{ or } 1|1 & h = 1 \text{ even or odd spin structure} \\
 3h - 3|2h - 2 & h \geq 2
 \end{cases}$$

 - odd modulus at $h = 1$ odd spin structure is a book keeping device;
 - odd moduli really first appear at genus 2, as curved super spaces.
Superstring worldsheets and moduli spaces

• Heterotic
 – Left : RS \(\Sigma_L \), moduli space \(\mathcal{M}_L \) coord resp. \(\tilde{z} \) and \(\tilde{m}^i \)
 – Right : SRS \(\Sigma_R \), moduli space \(\mathcal{M}_R \) coord resp. \((z, \theta) \) and \((m^i, \zeta^\alpha) \)
 – Worldsheet is a cycle \(\Sigma \subset \Sigma_L \times \Sigma_R \) of dim \(1|1 \)
 subject to \(\Sigma_{\text{red}} = \text{diag}(\Sigma_{L \text{red}} \times \Sigma_{R \text{red}}) : \tilde{z}^* = z + \text{nilpotent} \)
 – Moduli space is a cycle \(\Gamma \subset \mathcal{M}_L \times \mathcal{M}_R \) of dim \(3h - 3|2h - 2 \) for \(h \geq 2 \)
 subject to \(\Gamma_{\text{red}} = \text{diag}(\mathcal{M}_{L \text{red}} \times \mathcal{M}_{R \text{red}}) : (\tilde{m}^i)^* = m^i + \text{nilpotent} \)
 (reduced space obtained by setting all nilpotent variables to zero)

• Type II
 – Left : SRS \(\Sigma_L \), moduli space \(\mathcal{M}_L \) coord resp. \((\tilde{z}, \tilde{\theta}) \) and \((\tilde{m}^i, \tilde{\zeta}^\alpha) \)
 – Right : SRS \(\Sigma_R \), moduli space \(\mathcal{M}_R \) coord resp. \((z, \theta) \) and \((m^i, \zeta^\alpha) \)
 – Worldsheet is a cycle \(\Sigma \subset \Sigma_L \times \Sigma_R \) of dim \(1|2 \)
 – Moduli space is cycle \(\Gamma \subset \mathcal{M}_L \times \mathcal{M}_R \) of dim \(3h - 3|4h - 4 \) for \(h \geq 2 \)
 subject to \(\tilde{z}^* = z + \text{nilpotent} \) and \((\tilde{m}^i)^* = m^i + \text{nilpotent} \)

• Super-Stokes theorem ensures independence of the choice of cycles
 – in amplitudes with BRST invariant vertex operators
 – consistent definition of superstring amplitudes to all genera (Witten 2012)
Worldsheet action for Type II superstrings

- **Worldsheet is** $\Sigma \subset \Sigma_L \times \Sigma_R$
 - Σ_L has superconformal structure \tilde{J} with local coordinates $\tilde{z}|\tilde{\theta}$
 - Σ_R has superconformal structure J with local coordinates $z|\theta$

- **Superconformal invariant matter action**
 - worldsheet matter field
 $X^\mu(\tilde{z}, z|\tilde{\theta}, \theta) = x^\mu(\tilde{z}, z) + \theta \psi^\mu(\tilde{z}, z) + \tilde{\theta} \tilde{\psi}^\mu(\tilde{z}, z) + \tilde{\theta} \theta F^\mu(\tilde{z}, z)$
 - Worldsheet action in local coordinates ($D_{\theta} = \partial_{\theta} + \theta \partial_z$)
 $I_m[X^\mu, \tilde{J}, J] = \int_{\Sigma} [d\tilde{z}dz|d\tilde{\theta}d\theta] \tilde{D}_{\tilde{\theta}} X^\mu D_{\theta} X_\mu$
 - Superconformal algebra on fields generated by
 $S_{z\theta} = S_{z\theta} + \theta T_{zz}$
 $S_{z\tilde{\theta}} = \frac{1}{2} \psi^\mu \partial_z x_\mu$
 $T_{zz} = -\frac{1}{2} \partial_z x^\mu \partial_z x_\mu + \frac{1}{2} \psi^\mu \partial_z \psi_\mu$
 $\tilde{S}_{\tilde{z}\tilde{\theta}} = \tilde{S}_{\tilde{z}\tilde{\theta}} + \tilde{\theta} \tilde{T}_{\tilde{z}\tilde{z}}$
 $\tilde{S}_{\tilde{z}\tilde{\theta}} = \frac{1}{2} \tilde{\psi}^\mu \partial_{\tilde{z}} x_\mu$
 $\tilde{T}_{\tilde{z}\tilde{z}} = -\frac{1}{2} \partial_{\tilde{z}} x^\mu \partial_{\tilde{z}} x_\mu + \frac{1}{2} \tilde{\psi}^\mu \partial_{\tilde{z}} \tilde{\psi}_\mu$
Deformations of superconformal structures

• Under deformation of \tilde{J} for Σ_L and J for Σ_R

$$\delta I = \int_{\Sigma} [d\tilde{z}dz|d\tilde{\theta}d\theta] \left(H_{\tilde{\theta}}\tilde{z}^{\tilde{z}} S_{z\theta} + \tilde{H}_{\theta}^{\tilde{z}} \tilde{S}_{\tilde{z}\tilde{\theta}} \right)$$

– in components by integrating out $\tilde{\theta}, \theta$,

$$\delta I = \int_{\Sigma_{\text{red}}} d\tilde{z}dz \left(\mu_{\tilde{z}}^{\tilde{z}} T_{zz} + \chi_{\tilde{z}}^{\theta} S_{z\theta} + \tilde{\mu}_{z}^{\tilde{z}} T_{\tilde{z}\tilde{z}} + \tilde{\chi}_{z}^{\tilde{\theta}} \tilde{S}_{\tilde{z}\tilde{\theta}} \right)$$

– recover Beltrami differentials $\mu, \tilde{\mu}$ and worldsheet gravitino fields $\chi, \tilde{\chi}$

$$H_{\tilde{\theta}}^{\tilde{z}} = \tilde{\theta}(\mu_{\tilde{z}}^{\tilde{z}} + \theta \chi_{\tilde{z}}^{\theta}) \quad \tilde{H}_{\theta}^{\tilde{z}} = \theta(\tilde{\mu}_{z}^{\tilde{z}} + \tilde{\theta} \tilde{\chi}_{z}^{\tilde{\theta}})$$

– Finite deformations of the metric with $\tilde{\mu} = \bar{\mu}$ and $\tilde{\chi} = \bar{\chi}$

integrate to the standard 2-dim $\mathcal{N} = 1$ supergravity action

(Brink, Di Vecchia, Howe; Deser, Zumino 1976)

• Type II superstring perturbation theory requires $\tilde{\mu} \neq \bar{\mu}$ and $\tilde{\chi} \neq \bar{\chi}$
Type II string amplitude

- Parametrize deformations $\tilde{H}_\theta \tilde{z}, H_\theta \tilde{z}$ by slice $\{\tilde{J}(\tilde{m}), J(m)\}$ in $\mathcal{M}_L \times \mathcal{M}_R$

 $H_\theta \tilde{z} = \tilde{D}_\theta V^z + H_A \delta m^A$
 $H_A = \partial \mathcal{J}_\theta \tilde{z} / \partial \tilde{m}^A$
 $m^A = (m^i, \zeta^\alpha)$

 $\tilde{H}_\theta \tilde{z} = D_\theta \tilde{V}^\tilde{z} + \tilde{H}_A \delta \tilde{m}^\tilde{A}$
 $\tilde{H}_A = \partial \mathcal{J}_\theta \tilde{z} / \partial \tilde{m}^\tilde{A}$
 $\tilde{m}^\tilde{A} = (\tilde{m}^i, \tilde{\zeta}^\alpha)$

 ghost fields

 $V^z \rightarrow C^z = c^z + \theta \gamma^\theta$
 $H_\theta \tilde{z} \rightarrow B_{z\theta} = \beta_{z\theta} + \theta b_{zz}$

 $V^\tilde{z} \rightarrow \tilde{C}^\tilde{z} = \tilde{c}^\tilde{z} + \tilde{\theta} \tilde{\gamma}^\tilde{\theta}$
 $H_\theta \tilde{z} \rightarrow \tilde{B}_{\tilde{z}\tilde{\theta}} = \tilde{\beta}_{\tilde{z}\tilde{\theta}} + \tilde{\theta} \tilde{b}_{\tilde{z}\tilde{z}}$

- Super conformal invariant ghost action

 $I_{gh} = \int_\Sigma [d\tilde{z}dz|d\tilde{\theta}d\theta] \left(B_{z\theta} \tilde{D}_\theta C^z + \tilde{B}_{\tilde{z}\tilde{\theta}} D_\theta C^\tilde{z} + B_{z\theta} H_A \delta m^A + \tilde{B}_{\tilde{z}\tilde{\theta}} \tilde{H}_A \delta \tilde{m}^\tilde{A} \right)$

- The integrand for the full amplitude is given by

 $\int D(XB\tilde{B}C\tilde{C}) \mathcal{V}_1 \cdots \mathcal{V}_n \prod_{\tilde{A},A} [d\tilde{m}^\tilde{A}dm^A] \delta(\langle \tilde{B}, \tilde{H}_\tilde{A} \rangle) \delta(\langle B, H_A \rangle) e^{-I_m - I_{gh}}$

 - $\mathcal{V}_1 \cdots \mathcal{V}_n$ are BRST-invariant vertex operators.
 - Picture Changing Operator formalism (Friedan, Martinec, Shenker 1986)
 - \star may be obtained as singular limit for χ supported at points
 - \star globally regular reformulation via “vertical integration” (Sen, Witten 2016)
Loop momenta and Chiral amplitudes

- h independent loop momenta p^μ_I defined to flow across \mathcal{A}_I cycles
 \[p^\mu_I = \oint_{\mathcal{A}_I} dz \partial_z x^\mu \]

- Chiral Amplitudes (ED, Phong 1988)
 - Massless NS bosons with factorized polarization tensor $\tilde{\varepsilon}^\mu_i = \varepsilon^\mu_i \tilde{\varepsilon}_i$
 - Chiral amplitude at fixed loop momenta is given by
 \[\mathcal{F}_R(\mathcal{J}, \varepsilon_i, k_i, p_I) = \left\langle \mathcal{V}_1 \cdots \mathcal{V}_N e^{\int d\tilde{x} \partial_\tilde{x} x^\mu} \right\rangle \prod_A \delta(\langle B, H_A \rangle) \mathrm{d}m^A \]
 - Correlation functions $\langle \cdots \rangle$ computed with chiral Green functions

- Full Superstring Amplitudes
 - obtained by pairing left and right and integrating over $\Gamma \in \mathcal{M}_L \times \mathcal{M}_R$
 \[\mathcal{A}^{(h)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \int_{\mathbb{R}^{10}} dp^\mu_I \int_{\Gamma} \mathcal{F}_L(\tilde{\mathcal{J}}, \tilde{\varepsilon}_i, k_i, p^\mu_I) \mathcal{F}_R(\mathcal{J}, \varepsilon_i, k_i, p_I^\mu) \]
 - integration over vertex operator insertion points included in integration over Γ
 - cfr “double copy construction” in supergravity calculations
Parametrization of super moduli

- **Superconformal structure** $\mathcal{J} \in \mathcal{M}_h$ specified by transition functions
 - Concrete calculations use parametrization by gravitino field $\chi \tilde{z}^\theta$

- **Local parametrization of moduli** (in conformal-invariant theory)
 - Conformal structure \mathcal{J} with metric $g = |dz|^2$ in local coordinates (z, \tilde{z})
 - deform conformal structure by Beltrami differential to $g' = |dz + \mu d\tilde{z}|^2$
 - realized in CFT by inserting $\int_{\Sigma} d\tilde{z} dz \mu \tilde{z} T_{zz}$ to all orders in μ

- **Local parametrization of supermoduli** (in superconformal-invariant theory)
 - Start with Σ_{red} with complex structure given by $\mathcal{J} \in \mathcal{M}_{\text{red}}$
 - Deform super conformal structure by inserting T and S

 $$\int_{\Sigma_{\text{red}}} d\tilde{z} dz \left(\mu \tilde{z} T_{zz} + \chi \tilde{z}^\theta S_{z\theta} \right)$$

 - χ and μ parametrized by local odd coordinates on \mathcal{M}_h

- **For $h = 2$, even spin structures, holó projection** $\mathcal{M}_2 \to \mathcal{M}_2$ exists
 - via the super period matrix (ED, Phong 2001)

- **For $h \geq 5$ no holó projection** $\mathcal{M}_h \to \mathcal{M}_h$ exists (Donagi, Witten 2013)
The super period matrix (even spin structures)

- Start from conformal structure J for Σ_{red} with holó 1-forms ω_I
 \[
 \oint_{A_I} \omega_J = \delta_{IJ} \quad \oint_{B_I} \omega_J = \Omega_{IJ} \quad I, J = 1, 2
 \]

- Deform to superconformal structure \mathcal{J} on Σ with superholó forms $\hat{\omega}_I$
 \[
 \oint_{A_I} \hat{\omega}_J = \delta_{IJ} \quad \oint_{B_I} \hat{\omega}_J = \hat{\Omega}_{IJ} \quad I, J = 1, 2
 \]

 - Explicit formula for the super period matrix $\hat{\Omega}$ for even spin structure δ
 \[
 \hat{\Omega}_{IJ} = \Omega_{IJ} - \frac{i}{8\pi} \int_{\Sigma_{\text{red}}} \omega_I(z) \chi(z) S_\delta(z, w|\Omega) \chi(w) \omega_J(w) + \int_{\Sigma_{\text{red}}} \mu \omega_I \omega_J
 \]

 - $\hat{\Omega}_{IJ}$ is locally supersymmetric; $\hat{\Omega}_{IJ} = \hat{\Omega}_{JI}$; and $\text{Im} \hat{\Omega} > 0$
 - Every $\hat{\Omega}$ corresponds to an ordinary Riemann surface
 - Szegö kernel $S_\delta(z, w|\Omega)$ is non-singular in the interior of \mathcal{M}_2

\Rightarrow Projection using $\hat{\Omega}$ is holomorphic and natural for genus 2
Projecting and pairing Chiral Amplitudes

- **Chiral Amplitudes on \mathcal{M}_2**
 - Natural parametrization of \mathcal{M}_2 by $(\hat{\Omega}_{IJ}, \zeta^\alpha)$ (even spin structure δ)
 - involves measure $d\kappa[\delta](\hat{\Omega}, \zeta)$ and correlation functions $C[\delta](\epsilon_i, k_i, p_I|\hat{\Omega}, \zeta)$

- **Projection to chiral amplitudes on \mathcal{M}_2**
 - by integrating over ζ and summing over δ at fixed $\hat{\Omega}$
 $\mathcal{R}(\epsilon_i, k_i, p_I|\hat{\Omega}) = \sum_\delta \int_\zeta d\kappa[\delta](\hat{\Omega}, \zeta) C[\delta](\epsilon_i, k_i, p_I|\hat{\Omega}, \zeta)$
 $\mathcal{L}(\bar{\epsilon}_i, k_i, p_I|\hat{\Omega}) = \sum_\tilde{\delta} \int_{\tilde{\zeta}} d\kappa[\tilde{\delta}](\hat{\Omega}, \tilde{\zeta}) C[\tilde{\delta}](\bar{\epsilon}_i, k_i, p_I|\hat{\Omega}, \tilde{\zeta})$
 - for heterotic, \mathcal{L} is chiral half of bosonic string, has no integral in $\tilde{\zeta}$
 - phase factors determined by $Sp(4, \mathbb{Z})$ modular invariance

- **Pairing left and right chiral amplitudes, integrating over p_I and $\hat{\Omega}$**
 $A^{(2)}(\epsilon_i, \bar{\epsilon}_i, k_i) = \int_{\mathcal{M}_2} d\hat{\Omega} \int dp^\mu_I \mathcal{R}(\epsilon_i, k_i, p_I|\hat{\Omega}) \mathcal{L}(\bar{\epsilon}_i, k_i, p_I|\hat{\Omega})$
 - Integral over p_I is Gaussian and can be carried out explicitly.
Genus two

• Siegel Upper half space S_2

\[S_2 = \{ \Omega_{IJ} = \Omega_{JI} \in \mathbb{C} \text{ with } I, J = 1, 2 \text{ and } Y = \text{Im}\Omega > 0 \} \]

- $Sp(4, \mathbb{R})$ acts by $\Omega \rightarrow (A\Omega + B)(C\Omega + D)^{-1}$

\[M^t J M = J \quad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \]

- S_2 has $Sp(4, \mathbb{R})$-invariant metric ds_2^2 and volume form $d\mu_2$

\[ds_2^2 = \sum_{I,J,K,L=1,2} Y_{IJ}^{-1} d\bar{\Omega}_{JK} Y_{KL}^{-1} d\Omega_{LI} \]

• Compact Riemann surfaces Σ

- Choose canonical homology basis of $\mathcal{A}_I, \mathcal{B}_I$ cycles for $H_1(\Sigma, \mathbb{Z})$.
- ω_I dual holomorphic $(1,0)$ forms,

\[\oint_{\mathcal{A}_I} \omega_J = \delta_{IJ} \quad \oint_{\mathcal{B}_I} \omega_J = \Omega_{IJ} \]

- Riemann relations imply $\Omega \in S_2$;
- Modular group $Sp(4, \mathbb{Z})$; moduli space $M_2 = S_2/Sp(4, \mathbb{Z})$.
Genus-two Type II four-graviton amplitude

- **Type II four-graviton amplitude** (ED, Phong 2001 – 2005)

\[
A^{(2)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = g_s^2 \mathcal{K} \mathcal{\tilde{K}} \int_{\mathcal{M}_2} d\mu_2 \mathcal{B}^{(2)}(s_{ij} | \Omega)
\]

\[
\mathcal{B}^{(2)}(s_{ij} | \Omega) = \int_{\Sigma^4} \frac{\mathcal{Y} \wedge \mathcal{\tilde{Y}}}{(\det \text{Im} \Omega)^2} \exp \left(\sum_{i<j} s_{ij} G(z_i, z_j | \Omega) \right)
\]

- \(G(z_i, z_j)\) is the genus-two scalar Green function;
- \(\Delta(z_i, z_j)\) is a bi-holomorphic form independent of \(s, t, u\).

\[
\Delta(z, w) = \omega_1(z) \wedge \omega_2(w) - \omega_2(z) \wedge \omega_1(w)
\]

\[
\mathcal{Y} = (t - u) \Delta(z_1, z_2) \wedge \Delta(z_3, z_4) + (s - t) \Delta(z_1, z_3) \wedge \Delta(z_4, z_2)
\]

\[
+(u - s) \Delta(z_1, z_4) \wedge \Delta(z_2, z_3)
\]

- reproduced (with fermions) in pure spinor formulation (Berkovits, Mafra 2005)

- **Singularity structure**
 - For fixed \(\Omega\) integrations over \(\Sigma\) produce poles in \(\mathcal{B}\) at positive integers \(s_{ij}\).
 - The integral over \(\Omega\) requires analytic continuation beyond \(\text{Re}(s_{ij}) = 0\).
 - Branch cuts in \(s_{ij}\) starting at integers produced from \(\Omega_{11}, \Omega_{22} \rightarrow i\infty\)
Genus-two Heterotic four-graviton amplitude

• Heterotic four NS boson amplitude at genus 2 (ED, Phong 2005)

\[A^{(2)}_{\mathcal{O}}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = g_s^2 \kappa \int_{M_2} d\mu_2 B^{(2)}_{\mathcal{O}}(\tilde{\varepsilon}_i, k_i|\Omega) \]

\[B^{(2)}_{\mathcal{O}}(\tilde{\varepsilon}_i, k_i|\Omega) = \int_{\Sigma^4} \frac{\mathcal{Y} \wedge \mathcal{W}_{\mathcal{O}}(\tilde{\varepsilon}_i, k_i)}{(\det \text{Im}\Omega)^2 \Psi_{10}(\Omega)} \exp \left(\sum_{i<j} s_{ij} G(z_i, z_j) \right) \]

– \(\Psi_{10}(\Omega) \) is the Igusa cusp form.

• Dependence of the operator \(\mathcal{O} \) on the channel:
 * 4 gravitons \(\mathcal{R}^4 \)
 * 2 gravitons + 2 gauge bosons \(\mathcal{R}^2 \text{tr}(\mathcal{F}^2) \)
 * 4 gauge bosons \((\text{tr}\mathcal{F}^2)^2 \)
 * 4 gauge bosons \(\text{tr}(\mathcal{F}^4) \)

– For example,

\[\mathcal{W}_{\mathcal{R}^4}(\tilde{\varepsilon}_i, k_i) = \frac{\langle \prod_{i=1}^4 \tilde{\varepsilon}_i \cdot \bar{\partial} \tilde{x}(z_i) \ e^{ik_i \cdot \tilde{x}(z_i)} \rangle}{\langle \prod_{i=1}^4 e^{ik_i \cdot \tilde{x}(z_i)} \rangle} \]

– Gauge parts are obtained by the correlators of the current \((0, 1) \)-forms.
Singularities in the projection $\overline{M}_2 \to \overline{M}_2$

- Projection $\overline{M}_2 \to \overline{M}_2$ is holó, but integration extends to boundary
 - are there singularities in the projection $\overline{M}_2 \to \overline{M}_2$?

 $\Omega = \begin{pmatrix} \tau & u \\ u & \sigma \end{pmatrix}$

 $u \to 0$ separating node
 $\sigma \to i\infty$ non-separating node

- Key ingredient in $\hat{\Omega}$ is the Szegö kernel

 $S_\delta(z, w|\Omega) = \frac{\vartheta[\delta](z - w|\Omega)}{\vartheta[\delta](0|\Omega) E(z, w)}$

 - As $u \to 0$ we have $\vartheta[\delta](0|\Omega) \to \vartheta[\delta_1](0|\tau) \vartheta[\delta_2](0|\tau)$
 - Even $\delta = [\delta_1, \delta_2]$ with δ_1, δ_2 odd produces a singularity in S_δ and $\hat{\Omega}$

- Physical effects
 - singularity killed by ψ-zero modes in \mathbb{R}^{10} (space-time susy)
 - contribution when susy is broken by radiative corrections (Witten 2013)
 - Two-loop vacuum energy in Heterotic strings on CY orbifold $\mathbb{C}^3/\mathbb{Z}_2 \times \mathbb{Z}_2$
 \star is zero for $E_8 \times E_8 \to E_6 \times E_8$ with unbroken susy
 \star non-zero for $\text{Spin}(32)/\mathbb{Z}_2 \to SO(26) \times U(1)$ with broken susy
 (Atick, Dixon, Sen 1988; Dine, Seiberg, Witten; ED, Phong 2013; Berkovits, Witten 2014)
Singularities in the projection $\mathcal{M}_3 \rightarrow \mathcal{M}_3$

• Some basic structure theorems
 – A hyper-elliptic surface is a branched double cover of the sphere S^2;
 – All genus 1 and all genus 2 surfaces are hyper-elliptic;
 – Hyper-elliptic surfaces form a co-dim 1 sub-variety in the interior of \mathcal{M}_3
 (referred to as the hyper-elliptic divisor)

• The genus-three period matrix (for even spin structure)

$$\hat{\Omega}_{IJ} = \Omega_{IJ} - \frac{i}{8\pi} \int \int \omega_I(z)\chi(z)S_\delta(z,w|\Omega)\chi(w)\omega_J(w) + O(\chi^4)$$

 – For Ω on the hyper-elliptic divisor of \mathcal{M}_3
 there always exists an even spin structure δ such that $\vartheta[\delta](0|\Omega) = 0$
 – the presence of the extra Dirac zero modes kills effects of this singularity

⇒ Beautiful proposal for the genus 3 superstring measure
 (Cacciatori, Dalla Piazza, van Geemen 2008)

 – Another even δ does produce a subtle singularity in $\hat{\Omega}$ (Witten 2015)