Stratifying On-Shell Cluster Varieties

Jacob L. Bourjaily

Amplitudes 2018 Summer School
QMAP, University of California, Davis
Stratifying On-Shell Cluster Varieties

Jacob L. Bourjaily

Amplitudes 2018 Summer School
QMAP, University of California, Davis
Organization and Outline

1. The Amalgamation of On-Shell Diagrams
 - Basic Building Blocks: S-Matrices for Three Massless Particles

2. Building-Up the Grassmannian Correspondence: On-Shell Varieties
 - Grassmannian Representations of On-Shell Functions
 - Iterative Construction of Grassmannian ‘On-Shell’ Varieties
 - Characteristics of Grassmannian Representations

3. The Classification of On-Shell (Cluster) Varieties
 - Warm-Up: Classifying On-Shell Functions of $G(2,n)$
 - Definitions, Stratifications, and Conjectures
 - Application: the Stratification of On-Shell Varieties in $G(3,6)$

4. Conclusions and Future Directions
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of *three-point amplitudes* are always meaningful functions—even when the result is non-planar
Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of \textbf{three-point amplitudes} are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of \textbf{three-point amplitudes} are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of \textbf{three-point amplitudes} are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of *three-point amplitudes* are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.

\[
\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 67 \rangle \langle 78 \rangle \langle 81 \rangle \langle 14 \rangle \langle 42 \rangle \langle 29 \rangle \langle 96 \rangle \langle 63 \rangle \langle 39 \rangle \langle 91 \rangle
\]
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Recall that on-shell diagrams built out of \textbf{three-point amplitudes} are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of \textbf{three-point amplitudes} are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of \textbf{three-point amplitudes} are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar

\[
\left(\langle 91 \rangle \langle 23 \rangle \langle 46 \rangle - \langle 16 \rangle \langle 34 \rangle \langle 29 \rangle \right)^2 \frac{\delta^{2 \times 4} (\lambda \cdot \tilde{\eta}) \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 67 \rangle \langle 78 \rangle \langle 81 \rangle \langle 14 \rangle \langle 42 \rangle \langle 29 \rangle \langle 96 \rangle \langle 63 \rangle \langle 39 \rangle \langle 91 \rangle}
\]
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar

\[
\begin{align*}
\langle 91 \rangle \langle 23 \rangle \langle 46 \rangle - \langle 16 \rangle \langle 34 \rangle \langle 29 \rangle & \quad \delta^{2 \times 4} (\lambda \cdot \tilde{\eta}) \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \\
\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 67 \rangle \langle 78 \rangle \langle 81 \rangle \langle 14 \rangle \langle 42 \rangle \langle 29 \rangle \langle 96 \rangle \langle 63 \rangle \langle 39 \rangle \langle 91 \rangle
\end{align*}
\]
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of **three-point amplitudes** are always meaningful functions—even when the result is non-planar

\[
\begin{align*}
\langle 91 \rangle & \langle 23 \rangle \langle 46 \rangle - \langle 16 \rangle \langle 34 \rangle \langle 29 \rangle \\
\langle 12 \rangle & \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 67 \rangle \langle 78 \rangle \langle 81 \rangle \langle 14 \rangle \langle 42 \rangle \langle 29 \rangle \langle 96 \rangle \langle 63 \rangle \langle 39 \rangle \langle 91 \rangle \\
= & \frac{\delta^{2 \times 4} (\lambda \cdot \tilde{\eta}) \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 67 \rangle \langle 78 \rangle \langle 81 \rangle \langle 14 \rangle \langle 42 \rangle \langle 29 \rangle \langle 96 \rangle \langle 63 \rangle \langle 39 \rangle \langle 91 \rangle}
\end{align*}
\]
Amalgamating Diagrams from Three-Particle Amplitudes

Recall that on-shell diagrams built out of three-point amplitudes are always meaningful functions—even when the result is non-planar.

\[
\frac{\langle 91 \rangle \langle 23 \rangle \langle 46 \rangle - \langle 16 \rangle \langle 34 \rangle \langle 29 \rangle}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 67 \rangle \langle 78 \rangle \langle 81 \rangle \langle 14 \rangle \langle 42 \rangle \langle 29 \rangle \langle 96 \rangle \langle 63 \rangle \langle 39 \rangle \langle 91 \rangle} \left(\delta^{2 \times 4} (\lambda \cdot \tilde{\eta}) \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \right)
\]
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
\langle 12 \rangle^{h_3-h_1-h_2} \langle 23 \rangle^{h_1-h_2-h_3} \langle 31 \rangle^{h_2-h_3-h_1} \\
\propto h_1 + h_2 + h_3 \leq 0
\end{align*}
\]

\[
\begin{align*}
[12]^{h_1+h_2-h_3} \langle 23 \rangle^{h_2+h_3-h_1} \langle 31 \rangle^{h_3+h_1-h_2} \\
\propto h_1 + h_2 + h_3 \geq 0
\end{align*}
\]
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
\text{Diagram 1:} & \quad \frac{\langle 2\ 3 \rangle^4}{\langle 1\ 2\rangle \langle 2\ 3\rangle \langle 3\ 1\rangle} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \\
\text{Diagram 2:} & \quad \frac{[2\ 3]^4}{[1\ 2][2\ 3][3\ 1]} \delta^{2\times2}(\lambda \cdot \tilde{\lambda})
\end{align*}
\]
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance **uniquely** fix the kinematical
dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
1 & \rightarrow 2 &= \frac{\langle 2 \ 3 \rangle^4}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \langle 3 \ 1 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 (+, -, -) \\
1 & \rightarrow 3 \rightarrow 2 &= \frac{\langle 2 \ 3 \rangle^4}{[1 \ 2] [2 \ 3] [3 \ 1]} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 (-, +, +)
\end{align*}
\]
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
1 & \rightarrow 2 \quad = \quad \frac{\langle 2 \ 3 \rangle^4}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \langle 3 \ 1 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 (+, -, -) \\
1 & \rightarrow 3 \quad 2 \quad = \quad \frac{[2 \ 3]^4}{[1 \ 2] [2 \ 3] [3 \ 1]} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 (-, +, +)
\end{align*}
\]
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance \textbf{uniquely} fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
1 & \quad \quad 2 \\
\quad \quad 3 & \quad \quad 2
\end{align*}
\]

\[
1 = \frac{\langle 3 1 \rangle \langle 2 3 \rangle^3}{\langle 1 2 \rangle \langle 2 3 \rangle \langle 3 1 \rangle} \quad \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 (+ \frac{1}{2}, - \frac{1}{2}, -)
\]

\[
1 \quad \quad 3 \\
\quad \quad 3 \quad \quad 2
\]

\[
1 = \frac{[3 1][2 3]^3}{[1 2][2 3][3 1]} \quad \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 (- \frac{1}{2}, + \frac{1}{2}, +)
\]
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance **uniquely** fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
1 & \rightarrow 2 & = & \frac{\langle 3 \ 1 \rangle \langle 2 \ 3 \rangle^3}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \langle 3 \ 1 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 \left(+\frac{1}{2}, -\frac{1}{2}, - \right) \\
1 & \rightarrow 3 & = & \frac{[3 \ 1][2 \ 3]^3}{[1 \ 2][2 \ 3][3 \ 1]} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv A_3 \left(-\frac{1}{2}, +\frac{1}{2}, + \right)
\end{align*}
\]

Amplitudes 2018 Summer School
QMAP, University of California, Davis
Part III: Stratifying On-Shell Cluster Varieties
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance **uniquely** fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
1 & \rightarrow 2 \\
3 & \rightarrow 1
\end{align*}
\]

\[
\begin{align*}
\delta^{2\times4} (\lambda \cdot \tilde{\eta}) & \equiv A^{(2)}_3 \\
\frac{\delta^{2\times4} (\lambda \cdot \tilde{\eta})}{\langle 1 2\rangle \langle 2 3\rangle \langle 3 1\rangle} & = \frac{\delta^{1\times4} (\tilde{\lambda} \cdot \tilde{\eta})}{[1 2] [2 3] [3 1]} \equiv A^{(1)}_3
\end{align*}
\]

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
\text{Diagram 1} & : \quad 1 \quad = \quad \frac{\delta^{2\times4}(\lambda \cdot \eta)}{\langle 1 \; 2 \rangle \langle 2 \; 3 \rangle \langle 3 \; 1 \rangle} \quad \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv A^{(2)}_3 \\
\text{Diagram 2} & : \quad 1 \quad = \quad \frac{\delta^{1\times4}(\tilde{\lambda}^\perp \cdot \eta)}{[1 \; 2] \; [2 \; 3] \; [3 \; 1]} \quad \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv A^{(1)}_3
\end{align*}
\]
Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

\[
\begin{align*}
\text{Tree 1:} & \quad \delta^{2 \times 4} \left(\lambda \cdot \tilde{\eta} \right) \\
& \quad \frac{\delta^{2 \times 4} \left(\lambda \cdot \tilde{\eta} \right)}{\langle 1 2 \rangle \langle 2 3 \rangle \langle 3 1 \rangle} \delta^{2 \times 2} \left(\lambda \cdot \tilde{\lambda} \right) \equiv A_3^{(2)} \\
\text{Tree 2:} & \quad \delta^{1 \times 4} \left(\tilde{\lambda}^\perp \cdot \tilde{\eta} \right) \\
& \quad \frac{\delta^{1 \times 4} \left(\tilde{\lambda}^\perp \cdot \tilde{\eta} \right)}{[1 2] [2 3] [3 1]} \delta^{2 \times 2} \left(\lambda \cdot \tilde{\lambda} \right) \equiv A_3^{(1)}
\end{align*}
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex.
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use)
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$A_3^{(2)} = \frac{\delta^{2\times4} (\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} (\lambda \cdot \tilde{\lambda})$$
In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$A_3^{(2)} = \frac{\delta^{2\times 4} (\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times 2} (\lambda \cdot \tilde{\lambda})$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \\ b_1^3 & b_2^3 & b_3^3 \end{pmatrix}$$

$$\mathcal{A}^{(2)}_3 = \frac{\delta^{2 \times 4} (\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda})$$
Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$
\begin{align*}
A^{(2)}_3 &= \frac{\delta^{2 \times 4} (\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \\
&= \int \frac{d^2 B}{\text{vol}(G L_2)} \frac{\delta^{2 \times 4} (B \cdot \tilde{\eta})}{(12) (23) (31)} \delta^{2 \times 2} (B \cdot \tilde{\lambda}) \delta^{1 \times 2} (\lambda \cdot B^\perp)
\end{align*}
$$
Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \\ b_1^3 & b_2^3 & b_3^3 \end{pmatrix}$$

$$W \equiv \begin{pmatrix} w_1^1 & w_2^1 & w_3^1 \end{pmatrix}$$

The amplitude $\mathcal{A}_3^{(2)}$ is given by:

$$\mathcal{A}_3^{(2)} = \frac{\delta^{2\times4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(B \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot B^\perp)$$

The amplitude $\mathcal{A}_3^{(1)}$ is given by:

$$\mathcal{A}_3^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda \cdot \tilde{\lambda})$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B = \begin{pmatrix} b_1^1 & b_1^2 & b_1^3 \\ b_2^1 & b_2^2 & b_2^3 \end{pmatrix} \quad \text{and} \quad W = \begin{pmatrix} w_1^1 \\ w_1^2 \\ w_1^3 \end{pmatrix}$$

$$A_3^{(2)} = \frac{\delta^{2\times4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2\times3B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(B \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot B^\perp)$$

$$A_3^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda} \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda \cdot \tilde{\lambda})$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \\ b_1^3 & b_2^3 & b_3^3 \end{pmatrix}$$

$$W \equiv \begin{pmatrix} w_1^1 \\ w_2^1 \\ w_3^1 \end{pmatrix}$$

$$A^{(2)}_3 = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp)$$

$$A^{(1)}_3 = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})$$
Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary \(B \in G(2,3) \) and \(W \in G(1,3) \) for each vertex:

\[
\begin{align*}
1 \quad &\leftrightarrow B = \begin{pmatrix} b_1^1 & b_1^2 & b_1^3 \\ b_2^1 & b_2^2 & b_2^3 \end{pmatrix} \\
1 \quad &\leftrightarrow W = \begin{pmatrix} w_1^1 & w_1^2 & w_1^3 \end{pmatrix}
\end{align*}
\]

\[
\mathcal{A}^{(2)}_3 = \frac{\delta^{2 \times 4} \left(\lambda \cdot \tilde{\eta} \right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} \left(\lambda \cdot \tilde{\lambda} \right) \equiv \int \frac{d^2}{\text{vol}(GL_2)} \delta^{2 \times 4} \left(B \cdot \tilde{\eta} \right) \delta^{2 \times 2} \left(B \cdot \tilde{\lambda} \right) \delta^{1 \times 2} \left(\lambda \cdot B^\perp \right)
\]

\[
\mathcal{A}^{(1)}_3 = \frac{\delta^{1 \times 4} \left(\tilde{\lambda}^\perp \cdot \tilde{\eta} \right)}{[12][23][31]} \delta^{2 \times 2} \left(\lambda \cdot \tilde{\lambda} \right) \equiv \int \frac{d^1}{\text{vol}(GL_1)} \delta^{1 \times 4} \left(W \cdot \tilde{\eta} \right) \delta^{1 \times 2} \left(W \cdot \tilde{\lambda} \right) \delta^{2 \times 2} \left(\lambda \cdot W^\perp \right)
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

\[
1 \rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\
2 \rightarrow W \equiv \begin{pmatrix} w_1^1 & w_2^1 & w_3^1 \end{pmatrix}
\]

\[
\mathcal{A}_3^{(2)} = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp)
\]

\[
\mathcal{A}_3^{(1)} = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4}(W \cdot \tilde{\eta})}{(1) (2) (3)} \delta^{1 \times 2}(W \cdot \tilde{\lambda}) \delta^{2 \times 2}(\lambda \cdot W^\perp)
\]
Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

\[B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \]
\[W \equiv \begin{pmatrix} w_1^1 & w_1^1 & w_1^1 \end{pmatrix} \]

\[\mathcal{A}_3^{(2)} = \frac{\delta^{2\times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2\times 4}(B \cdot \tilde{\eta})}{(12)(23)(31)} \delta^{2\times 2}(B \cdot \tilde{\lambda}) \delta^{1\times 2}(\lambda \cdot B^\perp) \]

\[\mathcal{A}_3^{(1)} = \frac{\delta^{1\times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1\times 4}(W \cdot \tilde{\eta})}{(1)(2)(3)} \delta^{1\times 2}(W \cdot \tilde{\lambda}) \delta^{2\times 2}(\lambda \cdot W^\perp) \]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

\[
\begin{align*}
1 \quad & \quad \iff \quad B = \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\
3 \quad & \quad \iff \quad W = \begin{pmatrix} w_1^1 & w_2^1 & w_3^1 \end{pmatrix}
\end{align*}
\]

\[
\mathcal{A}_3^{(2)} = \frac{\delta^{2\times4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(B \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot B^\perp)
\]

\[
\mathcal{A}_3^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1\times4}(W \cdot \tilde{\eta})}{(1)(2)(3)} \delta^{2\times2}(W \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot W^\perp)
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

\[
\begin{align*}
\text{1} & \quad \leftrightarrow
\begin{pmatrix}
1 & b_1^1 & b_1^2 & b_1^3 \\
b_2^1 & 2 & b_2^2 & b_2^3 \\
b_3^1 & b_3^2 & 3
\end{pmatrix} \\
\text{2} & \quad \leftrightarrow
\begin{pmatrix}
w_1^1 & 1 & w_1^2 \\
w_2^1 & w_2^2 & w_2^3 \\
w_3^1 & 3 & w_3^3
\end{pmatrix} \\
\text{3} & \quad \leftrightarrow
\begin{pmatrix}
\lambda \cdot \bar{\eta} \\
\lambda \cdot B_\perp
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathcal{A}_3^{(2)} &= \frac{\delta^{2\times4}(\lambda \cdot \bar{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(\lambda \cdot \bar{\lambda}) \\
&= \int \frac{d^2 B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \bar{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(B \cdot \bar{\lambda}) \delta^{1\times2}(\lambda \cdot B_\perp)
\end{align*}
\]

\[
\begin{align*}
\mathcal{A}_3^{(1)} &= \frac{\delta^{1\times4}(\bar{\lambda}^\perp \cdot \bar{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda \cdot \bar{\lambda}) \\
&= \int \frac{d^3 W}{\text{vol}(GL_1)} \frac{\delta^{1\times4}(W \cdot \bar{\eta})}{(1)(2)(3)} \delta^{2\times2}(W \cdot \bar{\lambda}) \delta^{1\times2}(\lambda \cdot W_\perp)
\end{align*}
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$
\begin{align*}
1 & \quad \leftrightarrow \quad B = \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \quad & & \begin{pmatrix} w_1^1 & w_1^1 & w_3^1 \\ w_2^1 & w_2^1 & w_3^2 \end{pmatrix} \\
2 & & & 3
\end{align*}
$$

$$
\mathcal{A}_3^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv \int_\text{vol(GL}_2) \frac{d^2 \times 3 B}{(12)(23)(31)} \frac{\delta^{2 \times 4} (B \cdot \tilde{\eta})}{\delta^{2 \times 2} (B \cdot \tilde{\lambda}) \delta^{1 \times 2} (\lambda \cdot B^\perp)}
$$

$$
\mathcal{A}_3^{(1)} = \frac{\delta^{1 \times 4} (\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv \int_\text{vol(GL}_1) \frac{d^1 \times 3 W}{(1)(2)(3)} \frac{\delta^{1 \times 4} (W \cdot \tilde{\eta})}{\delta^{1 \times 2} (W \cdot \tilde{\lambda}) \delta^{2 \times 2} (\lambda \cdot W^\perp)}
$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$ B \equiv \begin{pmatrix} 1 & 0 & b_3^1 \\ 0 & 1 & b_3^2 \\ b_3^1 & b_3^2 & 0 \end{pmatrix} $$

$$ W \equiv \begin{pmatrix} 1 & w_2^1 & w_3^1 \\ w_2^1 & w_3^1 & 0 \end{pmatrix} $$

\[
\mathcal{A}^{(2)}_3 = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d b_3^1}{b_3^1} \wedge \frac{d b_3^2}{b_3^2} \delta^{2 \times 4}(B \cdot \tilde{\eta}) \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp) \\
\mathcal{A}^{(1)}_3 = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d w_2^1}{w_2^1} \wedge \frac{d w_3^1}{w_3^1} \delta^{1 \times 4}(W \cdot \tilde{\eta}) \delta^{1 \times 2}(W \cdot \tilde{\lambda}) \delta^{2 \times 2}(\lambda \cdot W^\perp)
\]
Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$
B \equiv \begin{pmatrix} \frac{1}{b_1^1} & 1 & 0 \\ \frac{1}{b_1^2} & 0 & 1 \end{pmatrix} \\
W \equiv \begin{pmatrix} \frac{1}{w_1^1} & 1 & \frac{1}{w_3^1} \end{pmatrix}
$$

$$
\mathcal{A}_3^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \bar{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \bar{\lambda}) \equiv \int \frac{d b_1^1}{b_1^1} \wedge \frac{d b_1^2}{b_1^2} \delta^{2 \times 4} (B \cdot \bar{\eta}) \delta^{2 \times 2} (B \cdot \bar{\lambda}) \delta^{1 \times 2} (\lambda \cdot B^\perp)
$$

$$
\mathcal{A}_3^{(1)} = \frac{\delta^{1 \times 4} (\bar{\lambda} \cdot \bar{\eta})}{[12] [23] [31]} \delta^{2 \times 2} (\lambda \cdot \bar{\lambda}) \equiv \int \frac{d w_3^1}{w_3^1} \wedge \frac{d w_1^1}{w_1^1} \delta^{1 \times 4} (W \cdot \bar{\eta}) \delta^{1 \times 2} (W \cdot \bar{\lambda}) \delta^{2 \times 2} (\lambda \cdot W^\perp)
$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

\[
\begin{align*}
1 & \leftrightarrow B = \begin{pmatrix} 0 & b_2^1 & 1 \\ 1 & b_2^2 & 0 \end{pmatrix} \\
1 & \leftrightarrow W = \begin{pmatrix} w_1^1 & w_2^1 & 1 \end{pmatrix}
\end{align*}
\]

\[
\mathcal{A}_3^{(2)} = \frac{\delta^{2\times4}(λ \cdot \tilde{η})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(λ \cdot \tilde{λ}) = \int \frac{dB_2^1}{b_2^1} \wedge \frac{dB_2^2}{b_2^2} \delta^{2\times4}(B \cdot \tilde{η}) \delta^{2\times2}(B \cdot \tilde{λ}) \delta^{1\times2}(λ \cdot B^\perp)
\]

\[
\mathcal{A}_3^{(1)} = \frac{\delta^{1\times4}(\tilde{λ}^\perp \cdot \tilde{η})}{[12][23][31]} \delta^{2\times2}(λ \cdot \tilde{λ}) = \int \frac{dW_1^1}{w_1^1} \wedge \frac{dW_2^1}{w_2^1} \delta^{1\times4}(W \cdot \tilde{η}) \delta^{1\times2}(W \cdot \tilde{λ}) \delta^{2\times2}(λ \cdot W^\perp)
\]
Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

\[
\begin{align*}
A_3^{(2)} &= \frac{\delta^{2\times4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(B \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot B^\perp) \\
A_3^{(1)} &= \frac{\delta^{1\times4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\text{vol}(GL_1)} \frac{\delta^{1\times4}(W \cdot \tilde{\eta})}{(1)\langle 2 \rangle \langle 3 \rangle} \delta^{2\times2}(W \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot W^\perp)
\end{align*}
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B = \begin{pmatrix} b^1_1 & b^1_2 & b^1_3 \\ b^2_1 & b^2_2 & b^2_3 \end{pmatrix} \quad W = \begin{pmatrix} w^1_1 \\ w^1_2 \\ w^1_3 \end{pmatrix}$$

$$A_3^{(2)} = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12\rangle \langle 23\rangle \langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \tilde{\eta})}{\langle 12\rangle \langle 23\rangle \langle 31\rangle} \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp)$$

$$A_3^{(1)} = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4}(W \cdot \tilde{\eta})}{\langle 1\rangle \langle 2\rangle \langle 3\rangle} \delta^{1 \times 2}(W \cdot \tilde{\lambda}) \delta^{2 \times 2}(\lambda \cdot W^\perp)$$
Grassmannian Representations of Three-Point Amplitudes

In order to \textit{linearize} momentum conservation at each three-particle vertex, (and to specify \textit{which} of the solutions to three-particle kinematics to use) we introduce \textbf{auxiliary} $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
1 \quad \blacksquare \\
\end{array} \\
\begin{array}{c}
2 \\
\end{array} \\
\begin{array}{c}
3 \\
\end{array}
\end{array}
\end{align*}
\iff
\begin{align*}
\begin{array}{c}
1 \quad \blacksquare \\
\begin{array}{c}
2 \\
\end{array} \\
\begin{array}{c}
3 \\
\end{array}
\end{array}
\end{align*}

\[
\begin{align*}
\mathcal{A}_3^{(2)} &= \frac{\delta^{2\times4}(\lambda \cdot \tilde{\eta})}{\langle12\rangle\langle23\rangle\langle31\rangle} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) = \int \frac{d^2\times3 B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \tilde{\eta})}{\langle12\rangle\langle23\rangle\langle31\rangle} \delta^{2\times2}(B \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot B^\perp)
\end{align*}
\]

\[
\begin{align*}
\mathcal{A}_3^{(1)} &= \frac{\delta^{1\times4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) = \int \frac{d^1\times3 W}{\text{vol}(GL_1)} \frac{\delta^{1\times4}(W \cdot \tilde{\eta})}{(1)(2)(3)} \delta^{1\times2}(W \cdot \tilde{\lambda}) \delta^{2\times2}(\lambda \cdot W^\perp)
\end{align*}
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix}$$

$$W \equiv \begin{pmatrix} w_1^1 \\ w_2^1 \\ w_3^1 \end{pmatrix}$$

$$A_3^{(2)} = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp)$$

$$A_3^{(1)} = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4}(W \cdot \tilde{\eta})}{(1) (2) (3)} \delta^{2 \times 2}(W \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot W^\perp)$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$
\begin{align*}
\text{1} & \quad \leftrightarrow \quad B = \begin{pmatrix}
 b_1^1 & b_2^1 & b_3^1 \\
 b_1^2 & b_2^2 & b_3^2
\end{pmatrix} \\
\text{1} & \quad \leftrightarrow \quad W = \begin{pmatrix}
 w_1^1 & w_2^1 & w_3^1
\end{pmatrix}
\end{align*}
$$

$$
A_3^{(2)} = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \\ = \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp) \\ B \mapsto B^*
$$

$$
A_3^{(1)} = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \\ = \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4}(W \cdot \tilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \tilde{\lambda}) \delta^{2 \times 2}(\lambda \cdot W^\perp)
$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$
1 \rightarrow 2 \leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \\ b_1^3 \end{pmatrix}
$$

$$
1 \rightarrow 3 \leftrightarrow W \equiv \begin{pmatrix} w_1^1 & w_2^1 & w_3^1 \end{pmatrix}
$$

$$
\mathcal{A}_3^{(2)} = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \langle 23 \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \tilde{\eta})}{\langle 12 \langle 23 \langle 31 \rangle} \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp)
$$

$$
\mathcal{A}_3^{(1)} = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12] [23] [31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4}(W \cdot \tilde{\eta})}{\langle 1 \langle 2 \langle 3 \rangle} \delta^{1 \times 2}(W \cdot \tilde{\lambda}) \delta^{2 \times 2}(\lambda \cdot W^\perp)
$$
Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$
B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \\ b_1^3 & b_2^3 & b_3^3 \end{pmatrix}
$$

$$
W \equiv \begin{pmatrix} w_1^1 & w_2^1 & w_3^1 \end{pmatrix}
$$

\[\mathcal{A}_3^{(2)} = \frac{\delta^{2\times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2\times 4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times 2}(B \cdot \tilde{\lambda}) \delta^{1\times 2}(\lambda \cdot B^\perp) \]

\[\mathcal{A}_3^{(1)} = \frac{\delta^{1\times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1\times 4}(W \cdot \tilde{\eta})}{\langle 1 \rangle \langle 2 \rangle \langle 3 \rangle} \delta^{1\times 2}(W \cdot \tilde{\lambda}) \delta^{2\times 2}(\lambda \cdot W^\perp) \]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

\[
\begin{align*}
1 & \quad \leftrightarrow \quad B = \left(b_1^1 \ b_2^1 \ b_3^1 \ b_1^2 \ b_2^2 \ b_3^2 \right) \\
2 & \quad \leftrightarrow \quad W = \left(w_1^1 \ w_2^1 \ w_3^1 \right)
\end{align*}
\]

\[
\mathcal{A}_3^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4} (B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (B \cdot \tilde{\lambda}) \delta^{1 \times 2} (\lambda \cdot B^\perp)
\]

\[
\mathcal{A}_3^{(1)} = \frac{\delta^{1 \times 4} (\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12] [23] [31]} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4} (W \cdot \tilde{\eta})}{(1) (2) (3)} \delta^{1 \times 2} (W \cdot \tilde{\lambda}) \delta^{2 \times 2} (\lambda \cdot W^\perp)
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$1 \rightarrow B \equiv \begin{pmatrix} b_1^1 & b_1^2 & b_1^3 \\ b_2^1 & b_2^2 & b_2^3 \end{pmatrix}$$

$$1 \rightarrow W \equiv \begin{pmatrix} w_1^1 & w_2^1 & w_3^1 \end{pmatrix}$$

$$\mathcal{A}_3^{(2)} = \frac{\delta^{2 \times 4}(\lambda \cdot \bar{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \bar{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \bar{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(B \cdot \bar{\lambda}) \delta^{1 \times 2}(\lambda \cdot B^\perp)_{B \mapsto B^* = \lambda}$$

$$\mathcal{A}_3^{(1)} = \frac{\delta^{1 \times 4}(\bar{\lambda}^\perp \cdot \bar{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \bar{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4}(W \cdot \bar{\eta})}{\langle 1 \rangle \langle 2 \rangle \langle 3 \rangle} \delta^{1 \times 2}(W \cdot \bar{\lambda}) \delta^{2 \times 2}(\lambda \cdot W^\perp)_{W \mapsto W^*}$$
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B \equiv \begin{pmatrix} b_1^1 & b_1^2 & b_1^3 \\ b_2^1 & b_2^2 & b_2^3 \end{pmatrix} \quad \text{and} \quad W \equiv \begin{pmatrix} w_1^1 & w_1^2 & w_1^3 \end{pmatrix}$$

$$A_3^{(2)} = \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 \times 3 B}{\text{vol}(GL_2)} \frac{\delta^{2 \times 4}(B \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2}(B \cdot \tilde{\lambda}) \begin{aligned} \delta^{1 \times 2}(\lambda \cdot B^\perp) \\ B \mapsto B^* = \lambda \end{aligned}$$

$$A_3^{(1)} = \frac{\delta^{1 \times 4}(\tilde{\lambda}^\perp \cdot \tilde{\eta})}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 \times 3 W}{\text{vol}(GL_1)} \frac{\delta^{1 \times 4}(W \cdot \tilde{\eta})}{(1)(2)(3)} \delta^{2 \times 2}(W \cdot \tilde{\lambda}) \begin{aligned} \delta^{1 \times 2}(W \cdot \tilde{\lambda}) \delta^{2 \times 2}(\lambda \cdot W^\perp) \\ W \mapsto W^* = \tilde{\lambda}^\perp \end{aligned}$$

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** \(B \in G(2, 3) \) and \(W \in G(1, 3) \) for each vertex:

\[
1 \quad \Leftrightarrow \quad B = \left(\begin{array}{ccc}
 b_1 & b_2 & b_3 \\
 b_1' & b_2' & b_3'
\end{array} \right)
\]

\[
1 \quad \Leftrightarrow \quad W = \left(\begin{array}{c}
 w_1 \\
 w_1' \\
 w_3'
\end{array} \right)
\]

\[
\mathcal{A}_3^{(2)} = \frac{\delta^{2\times4}(\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^2 B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \tilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B \cdot \tilde{\lambda}) \delta^{1\times2}(\lambda \cdot B^\perp)
\]

\[
\mathcal{A}_3^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda} \cdot \tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d^1 W}{\text{vol}(GL_1)} \frac{\delta^{1\times4}(W \cdot \tilde{\eta})}{(1)(2)(3)} \delta^{1\times2}(W \cdot \tilde{\lambda}) \delta^{2\times2}(\lambda \cdot W^\perp)
\]
Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2, 3)$ and $W \in G(1, 3)$ for each vertex:

$$B \equiv \begin{pmatrix} b_1^1 & b_1^2 & b_1^3 \\ b_2^1 & b_2^2 & b_2^3 \end{pmatrix} \quad \text{and} \quad W \equiv \begin{pmatrix} w_1^1 & w_2^1 & w_3^1 \end{pmatrix}$$

\[\mathcal{A}_3^{(2)} = \frac{\delta^{2\times4}(\lambda \cdot \bar{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda \cdot \bar{\lambda}) \equiv \int \frac{d^2B}{\text{vol}(GL_2)} \frac{\delta^{2\times4}(B \cdot \bar{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(B \cdot \bar{\lambda}) \frac{\delta^{1\times2}(\lambda \cdot B^\perp)}{B \mapsto B^* = \lambda} \]

\[\mathcal{A}_3^{(1)} = \frac{\delta^{1\times4}(\bar{\lambda}^\perp \cdot \bar{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda \cdot \bar{\lambda}) \equiv \int \frac{d^1W}{\text{vol}(GL_1)} \frac{\delta^{1\times4}(W \cdot \bar{\eta})}{\langle 1\rangle\langle 2\rangle\langle 3\rangle} \delta^{1\times2}(W \cdot \bar{\lambda}) \frac{\delta^{2\times2}(\lambda \cdot W^\perp)}{W \mapsto W^* = \bar{\lambda}^\perp} \]
Constructing the Correspondence: Amalgamations & Bridges
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2 \]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2) \]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2 \]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\((f_1, f_2) \mapsto f_1 \times f_2\)

\((C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\)

\((\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\)

\[
\begin{pmatrix}
1 & 2 & I \\
1 & w_2 & w_1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & b_4^1 \\
0 & 1 & b_4^2
\end{pmatrix}
\]
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Grassmannian Representations of On-Shell Functions
Iterative Construction of Grassmannian ‘On-Shell’ Varieties
Characteristics of Grassmannian Representations

Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

\[
\begin{pmatrix}
1 & 2 & \mathbb{1} \\
1 & w_2 & w_1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & b_4^1 \\
0 & 1 & b_4^2
\end{pmatrix}
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[
\begin{align*}
(f_1, f_2) & \mapsto f_1 \times f_2 \\
(C_1, C_2) & \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2) \\
(\Omega_1, \Omega_2) & \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2
\end{align*}
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[
\begin{align*}
(f_1, f_2) & \mapsto f_1 \times f_2 \\
(C_1, C_2) & \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2) \\
(\Omega_1, \Omega_2) & \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2
\end{align*}
\]

\[
\begin{pmatrix}
I \\
1 & 2 & 1 \\
1 & w_2 & w_1
\end{pmatrix}
\]

\[
\begin{pmatrix}
I' \\
3 & 4 \\
1 & 0 & b_4^1 \\
0 & 1 & b_4^2
\end{pmatrix}
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

\[
\begin{pmatrix}
1 & 2 & 1 \\
1 & w_2 & w_1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & b_4^1 \\
0 & 1 & b_4^2
\end{pmatrix}
\]
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties
Grassmannian Representations of On-Shell Functions
Iterative Construction of Grassmannian ‘On-Shell’ Varieties
Characteristics of Grassmannian Representations

Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \ (d_1, d_2) \mapsto d_1 + d_2\]

Amplitudes 2018 Summer School QMAP, University of California, Davis
Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

- \((f_1, f_2) \mapsto f_1 \times f_2\)
- \((C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\)
- \((\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \ (d_1, d_2) \mapsto d_1 + d_2\)

\[
\begin{pmatrix}
1 & 2 & I & 1' \\
1 & w_2 & w_I & 3 \\
1 & w_I & w_2 & 4 \\
\end{pmatrix}
\]

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

\[
C \equiv \begin{pmatrix}
1 & w_2 & w_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b^1_4 \\
0 & 0 & 0 & 0 & 1 & b^2_4
\end{pmatrix}
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\]
\[\quad (d_1, d_2) \mapsto d_1 + d_2\]

\[
C \equiv \begin{pmatrix}
1 & w_2 & w_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b_4^1 \\
0 & 0 & 0 & 0 & 1 & b_4^2 \\
\end{pmatrix}
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

\[
C \equiv \begin{pmatrix}
1 & w_2 & w_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b^1_4 \\
0 & 0 & 0 & 0 & 1 & b^2_4
\end{pmatrix}
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

- \((f_1, f_2) \mapsto f_1 \times f_2\)
- \((C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\)
- \((\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\)
 \((d_1, d_2) \mapsto d_1 + d_2\)

Amalgamation: Gluing Legs \((A, B)\)

- \(f \mapsto f'\)
- \(c_i \mapsto c_i \cap (c_A + c_B)^{\perp}\)
- \(C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\)
- \(\Omega \mapsto \Omega/\text{vol}(GL(1))\)
- \(d \mapsto d - 1\)

\[
C \equiv \begin{pmatrix}
1 & w_2 & w_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b^1_4 \\
0 & 0 & 0 & 0 & 1 & b^2_4 \\
\end{pmatrix}
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1+d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega/\text{vol}(GL(1)) \quad d \mapsto d-1\]

\[C \equiv \begin{pmatrix}
1 & w_2 & w_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b_4^1 \\
0 & 0 & 0 & 0 & 1 & b_4^2
\end{pmatrix}\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\((f_1, f_2) \mapsto f_1 \times f_2\)

\((C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\)

\((\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\)

Amalgamation: Gluing Legs \((A, B)\)

\(f \mapsto f'\)

\(c_i \mapsto c_i \cap (c_A + c_B)^\perp\)

\(C \mapsto C / (c_A + c_B) \subset G(k - 1, n - 2)\)

\(\Omega \mapsto \Omega / \text{vol}(GL(1))\)

\(d \mapsto d - 1\)
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B) \perp\]

\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]

\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C \perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\quad \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega/\text{vol}(GL(1))\quad \quad d \mapsto d - 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2}(C \cdot \lambda) \delta^{2 \times (n-k)}(\lambda \cdot C^\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

\[f_\Gamma \equiv \int \Omega_C \left(\delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\right)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[
(f_1, f_2) \mapsto f_1 \times f_2 \\
(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2) \\
(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \\
(d_1, d_2) \mapsto d_1 + d_2
\]

Amalgamation: Gluing Legs \((A, B)\)

\[
f \mapsto f' \\
c_i \mapsto c_i \cap (c_A + c_B)^\perp \\
C \mapsto C / (c_A + c_B) \subset G(k - 1, n - 2) \\
\Omega \mapsto \Omega / \text{vol}(GL(1)) \\
d \mapsto d - 1
\]

\[
C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}
\]

\[
f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[\left(\Omega_1, \Omega_2\right) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)\]

\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]

\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

\[C \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2
\end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\((f_1, f_2) \mapsto f_1 \times f_2\)

\((C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\)

\((\Omega_1, \Omega_2) \mapsto \Omega_1 \land \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\)

Amalgamation: Gluing Legs \((A, B)\)

\(f \mapsto f'\)

\(c_i \mapsto c_i \cap (c_A + c_B)^\perp\)

\(C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\)

\(\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\)

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \ \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega/\text{vol}(GL(1)) \quad d \mapsto d-1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties
Grassmannian Representations of On-Shell Functions
Iterative Construction of Grassmannian ‘On-Shell’ Varieties
Characteristics of Grassmannian Representations

Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[\left(C_1, C_2\right) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[\left(\Omega_1, \Omega_2\right) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B) \perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega/\text{vol}(GL(1)) \quad d \mapsto d - 1\]

\[
C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}
\]

\[
f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} \left(C \cdot \tilde{\lambda}\right) \delta^{2 \times (n-k)} \left(\lambda \cdot C \perp\right)
\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B) \)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega/\text{vol}(GL(1)) \quad d \mapsto d - 1\]

\[C \equiv \left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2 \\
\end{array}\right)\]

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/ (c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]
\[c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1))\]
\[d \mapsto d - 1\]

\[
f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

(f₁, f₂) ↦→ f₁ × f₂
(C₁, C₂) ↦→ C₁ ⊕ C₂ ⊂ G(k₁ + k₂, n₁ + n₂)
(Ω₁, Ω₂) ↦→ Ω₁ ∧ Ω₂ (d₁, d₂) ↦→ d₁ + d₂

Amalgamation: Gluing Legs (A, B)

f ↦→ f'
cᵢ ↦→ cᵢ ∩ (c_A + c_B)⊥
C ↦→ C/(c_A + c_B) ⊂ G(k−1, n−2)
Ω ↦→ Ω/ vol(GL(1)) d ↦→ d−1

C ≡ \begin{pmatrix} 1 & 2 & 3 & 4 \\ \hline 1 & w₂ & 0 & b₄² \\ 0 & 0 & 1 & b₄² \end{pmatrix}

f_Γ ≡ ∫ Ω_C δ^{k×2} (C·\tilde{\lambda}) δ^{2×(n−k)} (\lambda·C⊥)
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2 \]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2) \]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2 \]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp \]
\[C \mapsto C/(c_A + c_B) \subset G(k - 1, n - 2) \]
\[\Omega \mapsto \Omega/\text{vol}(GL(1)) \quad d \mapsto d - 1 \]

\[C \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2
\end{pmatrix} \]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\]

\[(d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]

\[c_i \mapsto c_i \cap (c_A + c_B)\perp\]

\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]

\[\Omega \mapsto \Omega / \text{vol}(GL(1))\]

\[d \mapsto d - 1\]

\[C \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2
\end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[
(f_1, f_2) \mapsto f_1 \times f_2 \\
(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2) \\
(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2
\]

Amalgamation: Gluing Legs \((A, B)\)

\[
f \mapsto f' \\
c_i \mapsto c_i \cap (c_A + c_B)^\perp \\
C \mapsto C/(c_A + c_B) \subset G(k - 1, n - 2) \\
\Omega \mapsto \Omega / \text{vol}(GL(1)) \\
d \mapsto d - 1
\]

\[
f_\Gamma \equiv \int_{\Omega C} \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)
\]

Amplitudes 2018 Summer School

QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)\parallel\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega/\text{vol}(GL(1)) \quad d \mapsto d-1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C\parallel)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d-1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d+1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \, \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C_{\perp})\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C / (c_A + c_B) \subset G(k - 1, n - 2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d + 1\]

\[C \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2 \\
\end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\]

\[(d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]

\[c_i \mapsto c_i \cap (c_A + c_B)\]

\[C \mapsto C/(c_A + c_B) \subset G(k - 1, n - 2)\]

\[\Omega \mapsto \Omega/\text{vol}(GL(1))\]

\[d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f'\]

\[c_B \mapsto c_B + \alpha c_A\]

\[C \mapsto C' \subset G(k, n)\]

\[\Omega \mapsto \Omega \wedge d\alpha/\alpha\]

\[d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_{\Gamma} \equiv \int_{\Omega_C} \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C)\]

\[f_{\Gamma} \equiv \delta^2(\tilde{\lambda}_1) \delta^2(\lambda_2) \delta^2(\tilde{\lambda}_3) \delta^2(\lambda_4)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C' \subset G(k - 1, n - 2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d + 1\]

\[C \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2
\end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C)^\perp\]

\[f_\Gamma \equiv \delta^2(\tilde{\lambda}_1) \delta^2(\lambda_2) \delta^2(\tilde{\lambda}_3) \delta^2(\lambda_4)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1,f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)\]

\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]

\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d-1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]

\[C \mapsto C' \subset G(k, n)\]

\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d+1\]

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/ (c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & w_2 & 0 & b_4^1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} \left(C \cdot \tilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^\perp \right)\]

\[C \equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}\]

\[f_\Gamma \equiv \delta^2 (\tilde{\lambda}_1) \delta^2 (\lambda_2) \delta^2 (\tilde{\lambda}_3) \delta^2 (\lambda_4)\]
Constructing the Correspondence: Amalgamations & Bridges

<table>
<thead>
<tr>
<th>Direct/Outer Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>((f_1, f_2) \mapsto f_1 \times f_2)</td>
</tr>
<tr>
<td>((C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2))</td>
</tr>
<tr>
<td>((\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2)</td>
</tr>
<tr>
<td>((d_1, d_2) \mapsto d_1 + d_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amalgamation: Gluing Legs ((A, B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f \mapsto f')</td>
</tr>
<tr>
<td>(c_i \mapsto c_i \cap (c_A + c_B)^\perp)</td>
</tr>
<tr>
<td>(C \mapsto C/(c_A + c_B) \subset G(k-1, n-2))</td>
</tr>
<tr>
<td>(\Omega \mapsto \Omega/\text{vol}(GL(1)))</td>
</tr>
<tr>
<td>(d \mapsto d - 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adding a ‘Bridge’ to Legs ((A, B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f \mapsto f')</td>
</tr>
<tr>
<td>(c_B \mapsto c_B + \alpha c_A)</td>
</tr>
<tr>
<td>(C \mapsto C' \subset G(k, n))</td>
</tr>
<tr>
<td>(\Omega \mapsto \Omega \wedge d\alpha / \alpha)</td>
</tr>
<tr>
<td>(d \mapsto d + 1)</td>
</tr>
</tbody>
</table>

\[
C \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2
\end{pmatrix}
\]

\[
f_\Gamma \equiv \int \Omega_C \delta^{k \times 2}(C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)}(\lambda \cdot C^\perp)
\]

\[
f_\Gamma \equiv \delta^2(\tilde{\lambda}_1) \delta^2(\lambda_2) \delta^2(\tilde{\lambda}_3) \delta^2(\lambda_4)
\]

Amplitudes 2018 Summer School | QMAP, University of California, Davis
Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\]
\[(d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]
\[c_i \mapsto c_i \cap (c_A + c_B)_{\perp}\]
\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1))\]
\[d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f'\]
\[c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d \alpha / \alpha\]
\[d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2}(C \cdot \overline{\lambda}) \delta^{2 \times (n-k)}(\lambda \cdot C_{\perp})\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\]

\[(d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]

\[c_i \mapsto c_i \cap (c_A + c_B)\]

\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]

\[\Omega \mapsto \Omega/\text{vol}(GL(1))\]

\[d \mapsto d-1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f'\]

\[c_B \mapsto c_B + \alpha c_A\]

\[C \mapsto C' \subset G(k, n)\]

\[\Omega \mapsto \Omega \wedge d\alpha/\alpha\]

\[d \mapsto d+1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C\)

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}\]

Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]

\[c_i \mapsto c_i \cap (c_A + c_B)\]

\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]

\[\Omega \mapsto \Omega / \text{vol}(GL(1))\]

\[d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f'\]

\[c_B \mapsto c_B + \alpha c_A\]

\[C \mapsto C' \subset G(k, n)\]

\[\Omega \mapsto \Omega \wedge d\alpha / \alpha\]

\[d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \ \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C\perp)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & \alpha_1 \\ 0 & 0 & 1 & 0 \end{pmatrix}\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)\]
\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d + 1\]

\[C \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & w_2 & 0 & b_4^1 \\
0 & 0 & 1 & b_4^2
\end{pmatrix}
\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} \left(C \cdot \tilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C \perp\right)\]

\[c \equiv \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

- \((f_1, f_2) \mapsto f_1 \times f_2\)
- \((C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\)
- \((\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\) \((d_1, d_2) \mapsto d_1 + d_2\)

Amalgamation: Gluing Legs \((A, B)\)

- \(f \mapsto f'\)
- \(c_i \mapsto c_i \cap (c_A + c_B)\)
- \(C \mapsto C/ (c_A + c_B) \subset G(k - 1, n - 2)\)
- \(\Omega \mapsto \Omega / \text{vol} (GL(1))\)
- \(d \mapsto d - 1\)

Adding a ‘Bridge’ to Legs \((A, B)\)

- \(f \mapsto f'\)
- \(c_B \mapsto c_B + \alpha c_A\)
- \(C \mapsto C' \subset G(k, n)\)
- \(\Omega \mapsto \Omega \wedge d\alpha / \alpha\)
- \(d \mapsto d + 1\)

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4' \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_{\Gamma} \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C')\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subseteq G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)\]
\[C \mapsto C / (c_A + c_B) \subseteq G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subseteq G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d + 1\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2\]
\[(d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]
\[c_i \mapsto c_i \cap (c_A + c_B)\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega/\text{vol}(GL(1))\]
\[d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f'\]
\[C_B \mapsto C_B + \alpha C_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha/\alpha\]
\[d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C)\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2 \]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1 + k_2, n_1 + n_2) \]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2 \]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f' \quad c_i \mapsto c_i \cap (c_A + c_B)^\perp \]
\[C \mapsto C / (c_A + c_B) \subset G(k - 1, n - 2) \]
\[\Omega \mapsto \Omega / \text{vol}(GL(1)) \quad d \mapsto d - 1 \]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f' \quad c_B \mapsto c_B + \alpha c_A \]
\[C \mapsto C' \subset G(k, n) \]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha \quad d \mapsto d + 1 \]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix} \]
\[f_\Gamma \equiv \int \Omega_C \; \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]

\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]

\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]

\[c_i \mapsto c_i \cap (c_A + c_B)^\perp\]

\[C \mapsto C / (c_A + c_B) \subset G(k-1, n-2)\]

\[\Omega \mapsto \Omega / \text{vol}(GL(1))\]

\[d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f'\]

\[c_B \mapsto c_B + \alpha c_A\]

\[C \mapsto C' \subset G(k, n)\]

\[\Omega \mapsto \Omega \wedge d\alpha / \alpha\]

\[d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & \alpha_2 & 0 & \alpha_1 \\ 0 & 0 & 1 & \alpha_3 \end{pmatrix}\]
Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products

\[(f_1, f_2) \mapsto f_1 \times f_2\]
\[(C_1, C_2) \mapsto C_1 \oplus C_2 \subset G(k_1+k_2, n_1+n_2)\]
\[(\Omega_1, \Omega_2) \mapsto \Omega_1 \wedge \Omega_2 \quad (d_1, d_2) \mapsto d_1 + d_2\]

Amalgamation: Gluing Legs \((A, B)\)

\[f \mapsto f'\]
\[c_i \mapsto c_i \cap (c_A + c_B)^\perp\]
\[C \mapsto C/(c_A + c_B) \subset G(k-1, n-2)\]
\[\Omega \mapsto \Omega / \text{vol}(GL(1))\]
\[d \mapsto d - 1\]

Adding a ‘Bridge’ to Legs \((A, B)\)

\[f \mapsto f'\]
\[c_B \mapsto c_B + \alpha c_A\]
\[C \mapsto C' \subset G(k, n)\]
\[\Omega \mapsto \Omega \wedge d\alpha / \alpha\]
\[d \mapsto d + 1\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ w_2 & 0 & b_4^1 \\ 0 & 0 & 1 & b_4^2 \end{pmatrix}\]

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp)\]

\[C \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & \alpha_2 & 0 & \alpha_1 \\ 0 & 0 & 1 & \alpha_3 \end{pmatrix}\]
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$\Omega \equiv d\alpha_1 \wedge \cdots \wedge d\alpha_9 \times \det(\text{Adj}_{N-4}) C(\alpha) \equiv \begin{pmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & \alpha_5 (1+\alpha_8) \alpha_2 \alpha_6 \alpha_7 \alpha_8 & 0 & 0 & 0 & 0 & 0 & 0 \\ \alpha_1 & \alpha_5 & \alpha_1 & \alpha_2 & \alpha_4 & \alpha_4 & \alpha_7 & 0 & 1 & 0 & 0 & 0 \\ \alpha_5 & \alpha_9 & \alpha_3 & \alpha_4 & \alpha_6 & \alpha_9 & (\alpha_3 \alpha_4 + \alpha_6 \alpha_9) & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$
\Omega \equiv \prod_{i=1}^{9} \alpha_i \wedge \cdots \wedge \prod_{i=4}^{9} \det(\text{Adj} N_{\alpha_i})
$$

$$
C(\alpha) \equiv \begin{pmatrix}
 c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \\
 \alpha_5 & \alpha_2 & \alpha_6 & \alpha_1 & \alpha_7 & \alpha_8 \\
1 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}
$$
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$C(\alpha)$$
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$C(\alpha) \equiv \begin{pmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \\ \alpha_5(1+\alpha_8) & \alpha_2 & \alpha_6 \alpha_7 \alpha_8 & 1 & 0 & 0 \\ \alpha_1 \alpha_5 & \alpha_1 \alpha_2 + \alpha_4 & \alpha_4 \alpha_7 & 0 & 1 & 0 \\ \alpha_5 \alpha_9 & \alpha_3 \alpha_4 & \alpha_7(\alpha_3 \alpha_4 + \alpha_6 \alpha_9) & 0 & 0 & 1 \end{pmatrix}$$
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$
C(\alpha) \equiv \begin{pmatrix}
 c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \\
 \alpha_5 (1+\alpha_8) & \alpha_2 & \alpha_6 & \alpha_7 & \alpha_8 & 1 \\
 \alpha_1 & \alpha_5 & \alpha_1 & \alpha_2 + \alpha_4 & \alpha_4 & \alpha_7 & 0 \\
 \alpha_5 & \alpha_9 & \alpha_3 & \alpha_4 & \alpha_7 (\alpha_3 \alpha_4 + \alpha_6 \alpha_9) & 0 & 1 \\
\end{pmatrix}
$$
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

\[
C(\alpha) \equiv \begin{pmatrix}
\alpha_5 (1 + \alpha_8) & \alpha_2 & \alpha_6 & \alpha_7 & \alpha_8 & 1 & 0 & 0 \\
\alpha_1 & \alpha_5 & \alpha_1 & \alpha_2 + \alpha_4 & \alpha_4 & \alpha_7 & 0 & 1 & 0 \\
\alpha_5 & \alpha_9 & \alpha_3 & \alpha_4 & \alpha_7 (\alpha_3 \alpha_4 + \alpha_6 \alpha_9) & 0 & 0 & 1
\end{pmatrix}
\]
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$C(\alpha) \equiv \begin{pmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \\ \alpha_5 (1+\alpha_8) & \alpha_2 & \alpha_6 & \alpha_7 & \alpha_8 & 1 \\ \alpha_1 & \alpha_5 & \alpha_1 & \alpha_2 + \alpha_4 & \alpha_4 & \alpha_7 & 0 \\ \alpha_5 & \alpha_9 & \alpha_5 & \alpha_3 & \alpha_4 & \alpha_7 (\alpha_3 \alpha_4 + \alpha_6 \alpha_9) & 0 \\ \end{pmatrix}$$
Construction via ‘Boundary Measurements’

A more direct way to construct \(C(\alpha) \) is via boundary measurements:

\[
C(\alpha) \equiv \begin{pmatrix}
\alpha_5(1+\alpha_8) & \alpha_2 & \alpha_6 & \alpha_7 & \alpha_8 & 1 & 0 & 0 \\
\alpha_1 & \alpha_5 & \alpha_1 & \alpha_2 + \alpha_4 & \alpha_4 & \alpha_7 & 0 & 1 & 0 \\
\alpha_5 & \alpha_9 & \alpha_3 & \alpha_4 & \alpha_7(\alpha_3\alpha_4 + \alpha_6\alpha_9) & 0 & 0 & 1
\end{pmatrix}
\]
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via **boundary measurements**:

$$C(\alpha) \equiv \begin{pmatrix}
\alpha_5(1+\alpha_8) & \alpha_2 & \alpha_6 \alpha_7 \alpha_8 & 1 & 0 & 0 \\
\alpha_1 \alpha_5 & \alpha_1 \alpha_2 + \alpha_4 & \alpha_4 \alpha_7 & 0 & 1 & 0 \\
\alpha_5 \alpha_9 & \alpha_3 \alpha_4 & \alpha_7(\alpha_3 \alpha_4 + \alpha_6 \alpha_9) & 0 & 0 & 1
\end{pmatrix}$$
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$\Omega \equiv \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_9}{\alpha_9}$$

$$C(\alpha) \equiv \begin{pmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \\ \alpha_5(1+\alpha_8) & \alpha_2 & \alpha_6 & \alpha_7 & \alpha_8 & 1 \\ \alpha_1 & \alpha_5 & \alpha_1 & \alpha_2+\alpha_4 & \alpha_4 & \alpha_7 \\ \alpha_5 & \alpha_9 & \alpha_3 & \alpha_4 & \alpha_7(\alpha_3\alpha_4+\alpha_6\alpha_9) & 0 \end{pmatrix}$$
Construction via ‘Boundary Measurements’

A more direct way to construct $C(\alpha)$ is via boundary measurements:

$$\Omega \equiv \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_9}{\alpha_9} \times \det(1-\text{Adj})^{N-4}$$

$$C(\alpha) \equiv \begin{pmatrix}
 c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \\
 \alpha_5(1+\alpha_8) & \alpha_2 & \alpha_6 & \alpha_7 & \alpha_8 & 1 & 0 & 0 \\
 \alpha_1 & \alpha_5 & \alpha_1 & \alpha_2+\alpha_4 & \alpha_4 & \alpha_7 & 0 & 1 & 0 \\
 \alpha_5 & \alpha_9 & \alpha_3 & \alpha_4 & \alpha_7(\alpha_3\alpha_4+\alpha_6\alpha_9) & 0 & 0 & 1
\end{pmatrix}$$
Construction via ‘Boundary Measurements’

A more direct way to construct \(C(\alpha) \) is via boundary measurements:

\[
\Omega \equiv \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_9}{\alpha_9} \times \det(1-\text{Adj})_{N-4}
\]

\[
C(\alpha) \equiv \begin{pmatrix}
\alpha_5(1+\alpha_8) & \alpha_2 & \alpha_6 & \alpha_7 & \alpha_8 & 1 & 0 & 0 \\
\alpha_1 & \alpha_5 & \alpha_1 & \alpha_2 + \alpha_4 & \alpha_4 & \alpha_7 & 0 & 1 & 0 \\
\alpha_5 & \alpha_9 & \alpha_3 & \alpha_4 & \alpha_7(\alpha_3\alpha_4+\alpha_6\alpha_9) & 0 & 0 & 1
\end{pmatrix}
\]
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]
General Characteristics of the Correspondence

\[f_{\Gamma} \equiv \int \Omega_C \ \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

\[n: \text{the number of external legs} \]

\[k: \text{the number of 'sources': } 2 \]

\[n_B + n_W - n_I \text{ (trivalent)} \]

\[d: \text{the number of coordinates} \]

\[C(\vec{\alpha}): 2n_V - n_I \text{ (trivalent); } n + n_I - n_V \text{ (general)} \]

\[\text{number of } \delta\text{-functions (beyond momentum conservation) is always: } 2n - 4 \]

(notice that when \(k = 2 \) (MHV), the constraints always require that \(C \rightarrow C^* = \lambda \))

\[\text{recall that } \dim(G(k, n)) = k(n - \frac{k(n-k)}{2}); \]

and so if \(d > k(n - \frac{k(n-k)}{2}) \), some of the coordinates must be degenerate

Definition: a diagram is called reduced if \(d(\Gamma) = \dim(C) \)

The number of reduced diagrams is (trivially) finite for fixed \(n, k, d \)
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \, \delta^{k \times 2} (C \cdot \tilde{\lambda}) \, \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- **n**: the number of external legs

\[\text{General Characteristics of the Correspondence} \]

\[f_\Gamma \equiv \int \Omega_C \, \delta^{k \times 2} (C \cdot \tilde{\lambda}) \, \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

\[\text{General Characteristics} \]

- **n**: the number of external legs
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- \(n \): the number of external legs
- \(k \): the number of ‘sources’: \(2n_B + n_W - n_I \) (trivalent)
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \ \delta^{k \times 2} (C \cdot \bar{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- **n**: the number of external legs
- **k**: the number of ‘sources’: \(2n_B + n_W - n_I\) (trivalent)
- **d**: the number of coordinates \(C(\vec{\alpha})\): \(2n_V - n_I\) (trivalent); \(n + n_I - n_V\) (general)
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \: \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- \(n \): the number of external legs
- \(k \): the number of ‘sources’: \(2n_B + n_W - n_I \) (trivalent)
- \(d \): the number of coordinates \(C(\vec{\alpha}) \): \(2n_V - n_I \) (trivalent); \(n + n_I - n_V \) (general)
- number of \(\delta \)-functions (beyond momentum conservation) is always: \(2n - 4 \)
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \, \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- \(n \): the number of external legs
- \(k \): the number of ‘sources’: \(2n_B + n_W - n_I \) (trivalent)
- \(d \): the number of coordinates \(C(\vec{\alpha}) \): \(2n_V - n_I \) (trivalent); \(n + n_I - n_V \) (general)
- number of \(\delta \)-functions (beyond momentum conservation) is always: \(2n - 4 \)
 (notice that when \(k = 2 \) (MHV), the constraints always require that \(C \leftrightarrow C^* = \lambda \))
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \, \delta^{k \times 2}(C \cdot \tilde{\lambda}) \, \delta^{2 \times (n-k)}(\lambda \cdot C \perp) \]

General Characteristics

- \(n \): the number of external legs
- \(k \): the number of ‘sources’: \(2n_B + n_W - n_I \) (trivalent)
- \(d \): the number of coordinates \(C(\vec{\alpha}) \): \(2n_V - n_I \) (trivalent); \(n + n_I - n_V \) (general)
- number of \(\delta \)-functions (beyond momentum conservation) is \textit{always}: \(2n - 4 \)
 (notice that when \(k = 2 \) (MHV), the constraints \textit{always} require that \(C \leftrightarrow C^* = \lambda \))
- recall that \(\dim(G(k, n)) = k(n-k) \);
General Characteristics of the Correspondence

\[f_{\Gamma} \equiv \int_{\Omega_C} \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- **n**: the number of external legs
- **k**: the number of ‘sources’: \(2n_B + n_W - n_I\) (trivalent)
- **d**: the number of coordinates \(C(\vec{\alpha})\): \(2n_V - n_I\) (trivalent); \(n + n_I - n_V\) (general)
- number of \(\delta\)-functions (beyond momentum conservation) is **always**: \(2n - 4\) (notice that when \(k = 2\) (MHV), the constraints **always** require that \(C \mapsto C^* = \lambda\))
- recall that \(\dim(G(k, n)) = k(n-k)\);
 and so if \(d > k(n-k)\), some of the coordinates **must** be degenerate
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \ \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- **\(n \):** the number of external legs
- **\(k \):** the number of ‘sources’: \(2n_B + n_W - n_I \) (trivalent)
- **\(d \):** the number of coordinates \(C(\bar{\alpha}) \): \(2n_V - n_I \) (trivalent); \(n + n_I - n_V \) (general)
- number of \(\delta \)-functions (beyond momentum conservation) is always: \(2n - 4 \) (notice that when \(k = 2 \) (MHV), the constraints always require that \(C \mapsto C^* = \lambda \))
- recall that \(\text{dim}(G(k, n)) = k(n-k) \);
 and so if \(d > k(n-k) \), some of the coordinates must be degenerate

Definition: a diagram is called reduced if \(d(\Gamma) = \text{dim}(C) \)
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\bot) \]

General Characteristics

- **n**: the number of external legs
- **k**: the number of ‘sources’: \(2n_B + n_W - n_I\) (trivalent)
- **d**: the number of coordinates \(C(\vec{\alpha})\): \(2n_V - n_I\) (trivalent); \(n + n_I - n_V\) (general)
- number of \(\delta\)-functions (beyond momentum conservation) is *always*: \(2n - 4\) (notice that when \(k = 2\) (MHV), the constraints *always* require that \(C \mapsto C^* = \lambda\))
- recall that \(\text{dim}(G(k, n)) = k(n-k)\);
 and so if \(d > k(n-k)\), some of the coordinates *must* be degenerate

Definition: a diagram is called **reduced** if \(d(\Gamma) = \text{dim}(C)\)
- the number of **reduced** diagrams is (trivially) **finite** for fixed \(n, k, d\)
General Characteristics of the Correspondence

\[f_\Gamma \equiv \int \Omega_C \, \delta^{k \times 2} (C \cdot \tilde{\lambda}) \, \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- **n**: the number of external legs
- **k**: the number of ‘sources’: \(2n_B + n_W - n_I\) (trivalent)
- **d**: the number of coordinates \(C(\vec{\alpha})\): \(2n_V - n_I\) (trivalent); \(n + n_I - n_V\) (general)
- number of \(\delta\)-functions (beyond momentum conservation) is always: \(2n - 4\) (notice that when \(k = 2\) (MHV), the constraints always require that \(C \mapsto C^* = \lambda\))
 - recall that \(\dim(G(k, n)) = k(n-k)\);
 - and so if \(d > k(n-k)\), some of the coordinates must be degenerate

Definition: a diagram is called **reduced** if \(d(\Gamma) = \dim(C)\)

- the number of reduced diagrams is (trivially) **finite** for fixed \(n, k, d\)
General Characteristics of the Correspondence

\[f_{\Gamma} \equiv \int_{\Omega C} \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^\perp) \]

General Characteristics

- \(n \): the number of external legs
- \(k \): the number of ‘sources’: \(2n_B + n_W - n_I \) (trivalent)
- \(d \): the number of coordinates \(C(\tilde{\alpha}) \): \(2n_V - n_I \) (trivalent); \(n + n_I - n_V \) (general)
- number of \(\delta \)-functions (beyond momentum conservation) is always: \(2n - 4 \) (notice that when \(k = 2 \) (MHV), the constraints always require that \(C \leftrightarrow C^* = \lambda \))
- recall that \(\text{dim}(G(k, n)) = k(n-k) \);
 and so if \(d > k(n-k) \), some of the coordinates must be degenerate

Definition: a diagram is called **reduced** if \(d(\Gamma) = \text{dim}(C) \)

- the number of reduced diagrams is (trivially) **finite** for fixed \(n, k, d \)
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to \emph{top-dimensional} varieties.
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to \emph{top-dimensional} varieties.
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to \textit{top-dimensional} varieties.

A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly \textbf{three} external legs
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs —through (arbitrary-length) chains of white vertices
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to \textit{top-dimensional} varieties.

A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$

- and each blue vertex must connect to exactly \textbf{three} external legs
 —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 4 & 6 \\ 4 & 5 & 1 \end{pmatrix}$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs — through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to \emph{top-dimensional} varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$

and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices.

We may label such diagrams by the triples, τ, of legs attached to blue vertices:
For \(k = 2 \) and \(\hat{n}_\delta = 0 \), reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:

- \(n_B = (n - 2) \)
- and each blue vertex must connect to exactly three external legs —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, \(\tau \), of legs attached to blue vertices:
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly *three* external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$
\begin{align*}
\{ & (1\ 2\ 3) \\
& (2\ 5\ 6) \\
& (3\ 4\ 6) \\
& (4\ 5\ 1) \}
\end{align*}
$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties.

A simple exercise shows that for any such reduced diagram:
- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs
 —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

\[
\tau = \{(1, 2, 3), (2, 5, 6), (3, 4, 6), (4, 5, 1)\}
\]
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties.

A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs
 —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

\[
\begin{cases}
(1 2 3) \\
(2 5 6) \\
(3 4 6) \\
(4 5 1)
\end{cases}
\rightarrow
\]
Application: Classifying On-Shell Functions for \(k = 2 \) (MHV)

For \(k = 2 \) and \(\hat{n}_\delta = 0 \), reduced diagrams correspond to top-dimensional varieties. A simple exercise shows that for any such reduced diagram:

- \(n_B = (n-2) \)
- and each blue vertex must connect to exactly three external legs
 —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, \(\tau \), of legs attached to blue vertices:

\[
\begin{align*}
\{ & (1 \ 2 \ 3) \\
& (2 \ 5 \ 6) \\
& (3 \ 4 \ 6) \\
& (4 \ 5 \ 1) \}
\end{align*}
\]

\[\implies C^\perp (\vec{\alpha}^*) \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \]
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:

1. $n_B = (n - 2)$
2. and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices.

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$\left\{(1\ 2\ 3)\ (2\ 5\ 6)\ (3\ 4\ 6)\ (4\ 5\ 1)\right\} \implies C^\perp(\vec{\alpha}^*) \equiv \left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle & \langle 31 \rangle & \langle 12 \rangle & 0 & 0 & 0
\end{array}\right)$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties.

A simple exercise shows that for any such reduced diagram:
- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$
\begin{aligned}
(1 & 2 & 3) \\
(2 & 5 & 6) \\
(3 & 4 & 6) \\
(4 & 5 & 1)
\end{aligned}
\Rightarrow
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle \langle 25 \rangle
\end{pmatrix}
\equiv
C^\perp(\bar{\alpha}^*)
$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties.

A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$

and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices.

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$\begin{align*}
(1 & 2 3) \\
(2 & 5 6) \\
(3 & 4 6) \\
(4 & 5 1)
\end{align*}$$

$$C^\perp(\vec{\alpha}^*) \equiv \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle & \langle 31 \rangle & \langle 12 \rangle & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle & \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle & \langle 63 \rangle & 0 & \langle 34 \rangle
\end{pmatrix}$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

\[
\begin{align*}
\{ (1\ 2\ 3) \} & \rightarrow C^\perp(\vec{\alpha}^*) \\
\{ (2\ 5\ 6) \} & \rightarrow C^\perp(\vec{\alpha}^*) \\
\{ (3\ 4\ 6) \} & \rightarrow C^\perp(\vec{\alpha}^*) \\
\{ (4\ 5\ 1) \} & \rightarrow C^\perp(\vec{\alpha}^*)
\end{align*}
\]

\[
C^\perp(\vec{\alpha}^*) = C^\perp(\vec{\alpha}^*) = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle & \langle 31 \rangle & \langle 12 \rangle & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle & \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle & \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle & \langle 14 \rangle & 0
\end{pmatrix}
\]
Application: Classifying On-Shell Functions for \(k = 2 \) (MHV)

For \(k = 2 \) and \(\hat{n}_\delta = 0 \), reduced diagrams correspond to *top-dimensional* varieties. A simple exercise shows that for any such reduced diagram:

- \(n_B = (n-2) \)

- and each blue vertex must connect to exactly three external legs

—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, \(\tau \), of legs attached to blue vertices:

\[
\begin{align*}
\{ (1 \ 2 \ 3) \} & \quad \{ (2 \ 5 \ 6) \} & \quad \{ (3 \ 4 \ 6) \} & \quad \{ (4 \ 5 \ 1) \} \\
\end{align*}
\]

\[
C^\perp (\vec{\alpha}^*) \equiv \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle \langle 14 \rangle & 0 \\
\end{pmatrix}
\]
Application: Classifying On-Shell Functions for \(k = 2 \) (MHV)

For \(k = 2 \) and \(\hat{n}_\delta = 0 \), reduced diagrams correspond to \emph{top-dimensional} varieties.

A simple exercise shows that for any such reduced diagram:

- \(n_B = (n - 2) \)
- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, \(\tau \), of legs attached to blue vertices:

\[
\begin{align*}
\{ (1,2,3), (2,5,6), (3,4,6), (4,5,1) \} \implies C_\perp (\vec{\alpha}^*) &\equiv \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle & \langle 25 \rangle \\
0 & 0 & 0 & \langle 46 \rangle & \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & 0 & \langle 51 \rangle & \langle 14 \rangle & 0 \\
\end{pmatrix} \\
\end{align*}
\]

\[
f_\Gamma \equiv \frac{1}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^2 \times 4 (C^* \vec{\eta}) \delta^2 \times 2 (C^* \vec{\lambda})
\]
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n - 2)$

- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$f_\Gamma \equiv \frac{1}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^2 \times 4 (C^* \tilde{\eta}) \delta^2 \times 2 (C^* \tilde{\lambda})$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$f_\Gamma \equiv \frac{1}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^{2 \times 4} (C^* \tilde{\eta}) \delta^{2 \times 2} (C^* \tilde{\lambda})$$
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n - 2)$
- and each blue vertex must connect to exactly three external legs — through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$
\begin{aligned}
\{ (1 \ 2 \ 3), (2 \ 5 \ 6), (3 \ 4 \ 6), (4 \ 5 \ 1) \} & \implies C^\perp(\vec{\alpha}^*) \\
& \equiv \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle & 0 & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle \langle 14 \rangle & 0
\end{pmatrix}
\end{aligned}
$$

$$
f_\Gamma \equiv \frac{1}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 14 \rangle} \delta^{2 \times 4} (C^* \vec{\eta}) \delta^{2 \times 2} (C^* \vec{\lambda})
$$
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties.

A simple exercise shows that for any such reduced diagram:
- $n_B = (n-2)$
- and each blue vertex must connect to exactly *three* external legs
 —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

\[
\begin{align*}
\tau & = \{ (1\ 2\ 3), (2\ 5\ 6), (3\ 4\ 6), (4\ 5\ 1) \} \\
\Rightarrow & \quad C^\perp(\vec{\alpha}^*) \equiv \\
& \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle & \langle 31 \rangle & \langle 12 \rangle & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle & \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle & \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle & \langle 14 \rangle & 0
\end{pmatrix}
\end{align*}
\]

\[
f_\Gamma \equiv \frac{1}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^{2 \times 4}(C^*\vec{\eta}) \delta^{2 \times 2}(C^*\vec{\lambda})
\]
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to \textit{top-dimensional} varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

\[
\begin{cases}
(1\ 2\ 3) \\
(2\ 5\ 6) \\
(3\ 4\ 6) \\
(4\ 5\ 1)
\end{cases}
\Rightarrow \quad C^\perp(\vec{\alpha}^*) \equiv \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle \langle 14 \rangle & 0
\end{pmatrix}
\]

\[
f_\Gamma \equiv \frac{1}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^2 \times 4(C^* \vec{\eta}) \delta^2 \times 2(C^* \vec{\lambda})
\]
Application: Classifying On-Shell Functions for \(k = 2 \) (MHV)

For \(k = 2 \) and \(\hat{n}_\delta = 0 \), reduced diagrams correspond to *top-dimensional* varieties.

A simple exercise shows that for any such reduced diagram:
- \(n_B = (n-2) \)
- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, \(\tau \), of legs attached to blue vertices:

\[
\begin{aligned}
C^{-1}(\vec{\alpha}^*) &\equiv \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle & \langle 31 \rangle & \langle 12 \rangle & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle & \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle & \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle & \langle 14 \rangle & 0
\end{pmatrix} \\
\end{aligned}
\]

\[
f_\Gamma \equiv \frac{1}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^{2 \times 4}(C^*:\widetilde{\eta}) \delta^{2 \times 2}(C^*:\widetilde{\lambda})
\]
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties. A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$

- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$\{ (1\, 2\, 3), (2\, 5\, 6), (3\, 4\, 6), (4\, 5\, 1) \} \implies C_{\perp}(\vec{\alpha}^{*}) \equiv \left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle & 0 & 0 & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle & \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle & \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle & \langle 14 \rangle & 0
\end{array} \right)$$

$$f_\Gamma \equiv \frac{\left(\langle 34 \rangle \langle 51 \rangle \langle 62 \rangle + \langle 14 \rangle \langle 25 \rangle \langle 63 \rangle \right)^2}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^{2 \times 4} (\lambda \cdot \vec{\eta}) \delta^{2 \times 2} (\lambda \cdot \vec{\lambda})$$
Application: Classifying On-Shell Functions for $k = 2$ (MHV)

For $k = 2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties.

A simple exercise shows that for any such reduced diagram:

- $n_B = (n - 2)$

- and each blue vertex must connect to exactly three external legs
 —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$\begin{align*}
(1 & 2 3) \\
(2 & 5 6) \\
(3 & 4 6) \\
(4 & 5 1)
\end{align*}$$

$$f_\Gamma \equiv \frac{\left(\langle 34 \rangle \langle 51 \rangle \langle 62 \rangle + \langle 14 \rangle \langle 25 \rangle \langle 63 \rangle \right)^2}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^{2 \times 4} (\lambda \cdot \tilde{\eta}) \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda})$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to top-dimensional varieties.

A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$

- and each blue vertex must connect to exactly three external legs—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$f_{\Gamma} \equiv \frac{\left(\langle 34 \rangle \langle 51 \rangle \langle 62 \rangle + \langle 14 \rangle \langle 25 \rangle \langle 63 \rangle \right)^2}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^{2 \times 4}(\lambda \cdot \eta) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})$$
Application: Classifying On-Shell Functions for $k=2$ (MHV)

For $k=2$ and $\hat{n}_\delta = 0$, reduced diagrams correspond to *top-dimensional* varieties.

A simple exercise shows that for any such reduced diagram:

- $n_B = (n-2)$
- and each blue vertex must connect to exactly three external legs
 —through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ, of legs attached to blue vertices:

$$\begin{align*}
\tau &= \{(1\ 2\ 3), (2\ 5\ 6), (3\ 4\ 6), (4\ 5\ 1)\} \\
\Rightarrow \quad C_{\perp}(\vec{\alpha}^*) &\equiv \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle & 0 & 0 & 0 & 0 \\
0 & \langle 56 \rangle & 0 & 0 & \langle 62 \rangle \langle 25 \rangle \\
0 & 0 & \langle 46 \rangle \langle 63 \rangle & 0 & \langle 34 \rangle \\
\langle 45 \rangle & 0 & 0 & \langle 51 \rangle \langle 14 \rangle & 0
\end{pmatrix}
\end{align*}$$

$$f_\Gamma \equiv \frac{\left(\langle 34 \rangle \langle 51 \rangle \langle 62 \rangle + \langle 14 \rangle \langle 25 \rangle \langle 63 \rangle\right)^2}{\langle 23 \rangle \langle 31 \rangle \langle 12 \rangle \langle 56 \rangle \langle 62 \rangle \langle 25 \rangle \langle 46 \rangle \langle 63 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle \langle 14 \rangle} \delta^{2\times 4}(\lambda \cdot \vec{\eta}) \delta^{2\times 2}(\lambda \cdot \vec{\lambda})$$
The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the \(\lambda_a \) variables:

\[
\text{PT}(1,2,3,4,5,6) \equiv \delta_{24} \times 4 \left(\lambda \cdot \tilde{\eta} \right) \\
\delta_{12} \times 2 \left(\lambda \cdot \tilde{\lambda} \right) \langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle \\
\equiv \{ (1,3,4) (3,2,4) \} \equiv \begin{cases} \\
\{ \end{cases}
\]

\[
\tilde{f}_\Gamma = \sum \{ \sigma \in (S_n/\mathbb{Z}_n) | \forall \tau \in T : \sigma \tau_1 < \sigma \tau_2 < \sigma \tau_3 \} \left(\text{PT}(\sigma_1,\ldots,\sigma_n), \ldots \right).
\]
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$PT(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^2 \times 4(\lambda \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle}$$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$
\text{PT}(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle}
$$

\[\iff\]

Diagram: Points 1 through 6 connected in a cycle.
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$ \text{PT}(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array} $$

$$ \Gamma = \sum \left\{ \sigma \in \left(S_n / \mathbb{Z}_n \right) \mid \forall \tau \in T: \sigma \tau \leq \sigma \right\} $$

$$ \text{PT}(\sigma_1, \ldots, \sigma_n), $$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$\text{PT}(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff \begin{cases} (1 2 4) \\ (3 2 4) \end{cases} \begin{cases} (1 3 4) \\ (3 2 4) \end{cases}$$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$\text{PT}(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^2 \times 4(\lambda \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}$$

$$\text{PT}(1, 3, 2, 4) \iff \begin{Bmatrix}
(1 \ 3 \ 4) \\
(3 \ 2 \ 4)
\end{Bmatrix} \iff \begin{Bmatrix}
1 \\
2 \\
3 \\
4
\end{Bmatrix}$$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$PT(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^2 \times 4(\lambda \cdot \bar{\eta}) \delta^2 \times 2(\lambda \cdot \bar{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff 6 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 6$$

$$\left\{ (1 \ 3 \ 4) \right\} \iff \left\{ \begin{array}{c} 1 \\ 3 \\ 2 \\ 4 \\ \end{array} \right\}$$

$$PT(1, 3, 2, 4)$$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$PT(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^2 \times 4(\lambda \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff \begin{cases} \{ (1 4 3) \} \\ \{ (3 2 4) \} \end{cases} \iff \begin{cases} \{ \begin{array}{c} 1 \quad 4 \quad 3 \\ 2 \quad 3 \quad 1 \end{array} \} \\ \{ \begin{array}{c} 1 \quad 2 \quad 4 \\ 3 \quad 2 \quad 1 \end{array} \} \end{cases} \iff PT(1, 4, 3, 2), \quad PT(1, 2, 4, 3) \quad \text{or} \quad \text{or} \quad 2\quad 4
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$\text{PT}(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff 6 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$\left\{ (1 \ 4 \ 3) \right\} \iff \left\{ \begin{array}{c} 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \end{array} \right\}$

$\zeta f_\Gamma = \sum \left\{ \sigma \in \left(S_n / \mathbb{Z}_n \right) \right\}$

$$\text{PT}(\sigma_1, ..., \sigma_n)$$

or

$$\text{PT}(1, 4, 3, 2), \text{ PT}(1, 2, 4, 3)$$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$PT(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^2(\lambda \cdot \tilde{\eta}) \delta^2(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \Leftrightarrow$$

$$\left\{ \begin{array}{c}
(1) \ 4 \ 3 \\
(3) \ 2 \ 4
\end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c}
1 \quad 4 \quad 3 \\
2 \quad 3
\end{array} \right\} \text{ or } \left\{ \begin{array}{c}
1 \quad 4 \\
2 \quad 3
\end{array} \right\} \text{ or } \left\{ \begin{array}{c}
1 \quad 2 \quad 4 \quad 3
\end{array} \right\}$$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$PT(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^2 \times 4 (\lambda \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \leftrightarrow \begin{array}{c}
1 \\
2 \\
3 \\
5 \\
4 \\
6
\end{array}$$

$$\tilde{f}_\Gamma = \sum_{\{\sigma \in (S_n/Z_n)\mid \forall \tau \in T: \sigma_{\tau_1} < \sigma_{\tau_2} < \sigma_{\tau_3}\}} PT(\sigma_1, \ldots, \sigma_n)$$
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

\[
\text{PT}(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^{2 \times 4}(\lambda \cdot \tilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}
\]

\[
\tilde{f}_\Gamma = \sum_{\{\sigma \in (S_n/\mathbb{Z}_n) | \forall \tau \in T: \sigma_{\tau_1} < \sigma_{\tau_2} < \sigma_{\tau_3}\}} \text{PT}(\sigma_1, \ldots, \sigma_n),
\]
Extended ‘Positivity’ and Parke-Taylor Completeness

The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$PT(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^{2\times 4}(\lambda \cdot \tilde{\eta}) \delta^{2\times 2}(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle}$$

$$\sim \begin{cases} \langle 1 4 3 \rangle \langle 2 3 4 \rangle \langle 3 2 4 \rangle \langle 1 4 3 \rangle \langle 2 3 4 \rangle & \text{or} \\ \frac{1}{2} \left(\langle 1 4 3 \rangle \langle 2 3 4 \rangle + \langle 2 3 4 \rangle \langle 3 2 4 \rangle \right) & \end{cases}$$

$$\tilde{f}_\Gamma = \sum_{\{\sigma \in (S_n/\mathbb{Z}_n) | \forall \tau \in T: \sigma_{\tau_1} < \sigma_{\tau_2} < \sigma_{\tau_3} \}} PT(\sigma_1, \ldots, \sigma_n)$$
The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically as imposing a certain kind of ‘positivity’ among the λ_a variables:

$$
\text{PT}(1, 2, 3, 4, 5, 6) \equiv \frac{\delta^2\times 4(\lambda \cdot \tilde{\eta})\delta^2\times 2(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle} \iff 6 \leftrightarrow 1
$$

$$
\tilde{f}_\Gamma = \sum \text{PT}(\sigma_1, \ldots, \sigma_n),
$$

$$
\{ \sigma \in (S_n/Z_n) | \forall \tau \in T: \sigma_{\tau_1} < \sigma_{\tau_2} < \sigma_{\tau_3} \}$$
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
PT(1, 2, \ldots, n) = \sum_{\sigma} PT(1, \sigma_1, \ldots, \sigma_{n-2}, n).
\]

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

$$\text{PT}(1, 2, \ldots, n)$$

$$(2\ n\ 1)$$
$$(2\ 3\ 4)$$
$$(2\ 4\ 5)$$
$$\vdots$$
$$(2\ n-1\ n)$$

$$(2\ 1\ n)$$
$$(2\ 3\ 4)$$
$$(2\ 4\ 5)$$
$$\vdots$$
$$(2\ n-1\ n)$$

$$\text{PT}(1, n, 2, \ldots, n-1) + \ldots + \text{PT}(1, 3, \ldots, n, 2)$$
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
\begin{align*}
\begin{pmatrix}
(2 & n & 1) \\
(2 & 3 & 4) \\
(2 & 4 & 5) \\
\vdots \\
(2n-1 & n)
\end{pmatrix} & = \\
\text{PT}(1, 2, \ldots, n) & \text{PT}(1, n, 2, \ldots, n-1) + \ldots + \text{PT}(1, 3, \ldots, n, 2)
\end{align*}
\]
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
\begin{align*}
\frac{1}{n} \left\{ \begin{array}{c}
(2 & n 1) \\
(2 & 3 4) \\
\vdots \\
(2 & n-1 n)
\end{array} \right\} &= \left\{ \begin{array}{c}
(2 & 1 n) \\
(2 & 3 4) \\
\vdots \\
(2 & n-1 n)
\end{array} \right\} \\
- \text{PT}(1, 2, \ldots, n) &= \text{PT}(1, n, 2, \ldots, n-1) + \ldots + \text{PT}(1, 3, \ldots, n, 2)
\end{align*}
\]
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
(\alpha_1 \cdots \alpha_{-2} \alpha_{-1} n) (\beta_1 \cdots \beta_{-2} \beta_{-1}) = \sum_{\sigma} \text{PT}(1, \sigma_1, \ldots, \sigma_n - 2, n).
\]
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
\begin{pmatrix}
(1 \alpha_1 n) \\
(\alpha_1 \alpha_2 n) \\
\vdots \\
(\alpha_{-2} \alpha_{-1} n) \\
(n \beta_1 \beta_2) \\
\vdots \\
(n \beta_{-2} \beta_{-1}) \\
(n \beta_{-1} 1)
\end{pmatrix}
\]

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and **KK-relations**:

\[
\begin{align*}
\left\{ \begin{array}{c}
(1 \alpha_1 \ n) \\
(\alpha_1 \alpha_2 \ n) \\
\vdots \\
(\alpha_{-2} \alpha_{-1} \ n) \\
(n \beta_1 \beta_2) \\
\vdots \\
(n \beta_{-2} \beta_{-1}) \\
(n \beta_{-1} \ 1) \\
\end{array} \right\}
\end{align*}
\]

\[
\begin{align*}
\left\{ \begin{array}{c}
(1 \alpha_1 \ n) \\
(\alpha_1 \alpha_2 \ n) \\
\vdots \\
(\alpha_{-2} \alpha_{-1} \ n) \\
(n \beta_1 \beta_2) \\
\vdots \\
(n \beta_{-2} \beta_{-1}) \\
(n \beta_{-1} \ 1) \\
\end{array} \right\}
\end{align*}
\]

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

$$(-1)^{n_{\beta}} \left\{ \begin{array}{c}
(1 \alpha _1 n) \\
(\alpha _1 \alpha _2 n) \\
\vdots \\
(\alpha _2 \alpha _1 n) \\
(n \beta _1 \beta _2) \\
\vdots \\
(n \beta _2 \beta _1) \\
(n \beta _1 1) \\
(n 1 \beta _1) \\
\end{array} \right\} = \left\{ \begin{array}{c}
(1 \alpha _1 n) \\
(\alpha _1 \alpha _2 n) \\
\vdots \\
(\alpha _2 \alpha _1 n) \\
(n \beta _1 \beta _2) \\
\vdots \\
(n \beta _2 \beta _1) \\
(n 1 \beta _1) \\
\end{array} \right\}$$
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
(-1)^{n_\beta} \times \text{PT}(1, \alpha_1, \ldots, \alpha_{-1}, n, \beta_1, \ldots, \beta_{-1}) = \sum_{\sigma} \text{PT}(1, \sigma_1, \ldots, \sigma_{n-2}, n),
\]

where $\sigma \in (\{\alpha_1, \ldots, \alpha_{-1}\} \uplus \{\beta_1, \ldots, \beta_{-1}\})$.

\[
\begin{align*}
(-1)^{n_\beta} \times & \quad \begin{pmatrix}
(1 & \alpha_1 & n) \\
(\alpha_1 & \alpha_2 & n) \\
& \vdots \\
(\alpha_{-2} & \alpha_{-1} & n) \\
(n & \beta_1 & \beta_2) \\
& \vdots \\
(n & \beta_{-2} & \beta_{-1}) \\
(n & \beta_{-1} & 1)
\end{pmatrix} = \\
& \quad \begin{pmatrix}
(1 & \alpha_1 & n) \\
(\alpha_1 & \alpha_2 & n) \\
& \vdots \\
(\alpha_{-2} & \alpha_{-1} & n) \\
(n & \beta_2 & \beta_1) \\
& \vdots \\
(n & \beta_{-1} & \beta_{-2}) \\
(n & 1 & \beta_{-1})
\end{pmatrix}
\end{align*}
\]
This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
(-1)^{n_{\beta}} \times PT(1, \alpha_1, \ldots, \alpha_{-1}, n, \beta_1, \ldots, \beta_{-1}) = \sum_{\sigma \in \{\alpha_1, \ldots, \alpha_{-1}\} \cup \{\beta_1, \ldots, \beta_{-1}\}} PT(1, \sigma_1, \ldots, \sigma_{n-2}, n).
\]

\[
(-1)^{n_{\beta}} \times PT(1, \alpha_1, \ldots, \alpha_{-1}, n, \beta_1, \ldots, \beta_{-1}) = \sum_{\sigma \in \{\alpha_1, \ldots, \alpha_{-1}\} \cup \{\beta_1, \ldots, \beta_{-1}\}} PT(1, \sigma_1, \ldots, \sigma_{n-2}, n).
\]
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
(-1)^{n_\beta} \times \text{PT}(1, \alpha_1, \ldots, \alpha_{-1}, n, \beta_1, \ldots, \beta_{-1}) = \sum_{\sigma \in (\{\alpha_1, \ldots, \alpha_{-1}\} \cup \{\beta_1, \ldots, \beta_{-1}\})} \text{PT}(1, \sigma_1, \ldots, \sigma_{n-2}, n).
\]

\[
(-1)^{n_\beta} = \sum \begin{pmatrix} (1 \alpha_1 n) \\ (\alpha_1 \alpha_2 n) \\ \vdots \\ (\alpha_{-2} \alpha_{-1} n) \\ (n \beta_1 \beta_2) \\ \vdots \\ (n \beta_{-2} \beta_{-1}) \\ (n \beta_{-1} 1) \end{pmatrix} \quad = \quad \begin{pmatrix} (1 \alpha_1 n) \\ (\alpha_1 \alpha_2 n) \\ \vdots \\ (\alpha_{-2} \alpha_{-1} n) \\ (n \beta_2 \beta_1) \\ \vdots \\ (n \beta_{-1} \beta_{-2}) \\ (n 1 \beta_{-1}) \end{pmatrix}
\]
Geometry of Kleiss-Kuijf Relations and $U(1)$-Decoupling

This gives a geometric interpretation of the $U(1)$-decoupling and KK-relations:

\[
(-1)^{n\beta} \times \text{PT}(1, \alpha_1, \ldots, \alpha_{-1}, n, \beta_1, \ldots, \beta_{-1}) = \sum_{\sigma \in (\{\alpha_1, \ldots, \alpha_{-1}\} \uplus \{\beta_1, \ldots, \beta_{-1}\})} \text{PT}(1, \sigma_1, \ldots, \sigma_{n-2}, n).
\]
Beyond MHV ($k > 2$), we propose a **brute-force** approach:
Beyond MHV \((k > 2)\), we propose a \textbf{brute-force} approach:

- construct all on-shell diagrams, and enumerate the functions that result
Beyond MHV ($k > 2$), we propose a **brute-force** approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)
Beyond MHV \((k > 2)\), we propose a **brute-force** approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)

Some important technicalities to consider:
Beyond MHV ($k > 2$), we propose a **brute-force** approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)

Some important technicalities to consider:

- for $\hat{n}_\delta \neq 0$, we cannot compare on-shell *functions* (as mere ‘functions’)
Beyond MHV \((k > 2)\), we propose a \textbf{brute-force} approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)

Some important technicalities to consider:

- for \(\hat{n}_\delta \neq 0\), we cannot compare on-shell \textit{functions} (as mere ‘functions’)
 - and so merely ‘computing’ them (as functions of \(\lambda, \tilde{\lambda}\)) will not suffice
Beyond MHV ($k > 2$), we propose a brute-force approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)

Some important technicalities to consider:

- for $\hat{n}_\delta \neq 0$, we cannot compare on-shell functions (as mere ‘functions’)
 and so merely ‘computing’ them (as functions of λ, $\tilde{\lambda}$) will not suffice
- although the map from on-shell diagrams to on-shell varieties is direct
 (and easy to implement)
Beyond MHV \((k > 2)\), we propose a **brute-force** approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)

Some important technicalities to consider:

- for \(\hat{n}_\delta \neq 0\), we cannot compare on-shell *functions* (as mere ‘functions’)
 - and so merely ‘computing’ them (as functions of \(\lambda, \tilde{\lambda}\)) will not suffice

- although the map from on-shell *diagrams* to on-shell *varieties* is direct
 (and easy to implement), this map introduces specific sets of (cluster) coordinates for each variety \(C(\vec{\alpha})\) which can obscure equivalences
Beyond MHV ($k > 2$), we propose a **brute-force** approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)

Some important technicalities to consider:

- for $\hat{n}_\delta \neq 0$, we cannot compare on-shell *functions* (as mere ‘functions’)
 and so merely ‘computing’ them (as functions of $\lambda, \tilde{\lambda}$) will not suffice

- although the map from on-shell *diagrams* to on-shell *varieties* is direct
 (and easy to implement), this map introduces specific sets of (cluster) coordinates for each variety $C(\vec{\alpha})$ which can obscure equivalences
 - it can be difficult to construct/identity diffeomorphisms between charts
Beyond MHV \((k > 2)\), we propose a \textbf{brute-force} approach:

- construct all on-shell diagrams, and enumerate the functions that result
 (not as trivial as it may at first appear...)

\textbf{Some important technicalities to consider:}

- for \(\hat{n}_\delta \neq 0\), we cannot compare on-shell functions (as mere ‘functions’)
 and so merely ‘computing’ them (as functions of \(\lambda, \tilde{\lambda}\)) will not suffice

- although the map from on-shell diagrams to on-shell varieties is direct
 (and easy to implement), this map introduces specific sets of (cluster)
 coordinates for each variety \(C(\vec{\alpha})\) which can obscure equivalences

 - it can be difficult to construct/identity diffeomorphisms between charts
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
A diagram is reduced if \(\dim(C) = d(\Gamma) \).
Two varieties are isomorphic if there exists a volume-preserving diffeomorphism between them.
The boundaries of a variety are those of all reduced diagrams obtained by removing edges from its diagram.
The stratification of a variety is the graph of the poset generated by its iterated boundaries.

Conjectures:
(all well-tested)
Two varieties are isomorphic iff their diagrams are related by ‘square moves'/mergers.
Two varieties are isomorphic iff their boundaries are isomorphic.
Two varieties are equivalent iff their stratifications are isomorphic as graphs.

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Definitions:

- A diagram is reduced if \(\dim(C(\Gamma)) = d(\Gamma) \).
- Two varieties are isomorphic if there exists a volume-preserving diffeomorphism between them.
- The boundaries of a variety are those of all reduced diagrams obtained by removing edges from its diagram.
- The stratification of a variety is the graph of the poset generated by its iterated boundaries.
- Two varieties are called equivalent if they are related by relabeling and/or parity.

Conjectures:

- (all well-tested) Two varieties are isomorphic iff their diagrams are related by 'square moves'/mergers.
- Two varieties are isomorphic iff their boundaries are isomorphic.
- Two varieties are equivalent iff their stratifications are isomorphic as graphs.
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:

- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:

- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them

Conjectures: (all well-tested)
- Two varieties are isomorphic iff their diagrams are related by 'square moves'/mergers
- Two varieties are isomorphic iff their boundaries are isomorphic
- Two varieties are equivalent iff their stratifications are isomorphic as graphs
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers

Amplitudes 2018 Summer School
QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **equivalent** if they are related by relabeling and/or parity

\[\text{Amplitudes 2018 Summer School} \quad \text{QMAP, University of California, Davis} \]

Part III: Stratifying On-Shell Cluster Varieties
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all **reduced** diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all **reduced** diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all **reduced** diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs

Amplitudes 2018 Summer School QMAP, University of California, Davis **Part III: Stratifying On-Shell Cluster Varieties**
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\text{dim}(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers

\[
\partial \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{pmatrix}
\]
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all **reduced** diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are equivalent iff their stratifications are isomorphic as graphs

\[
\partial \left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \right) \Rightarrow \left\{ \begin{array}{cccccc}
\end{array} \right\}
\]
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers

\[\partial \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \Rightarrow \begin{cases} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \end{cases} \]
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them.
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram.

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers.

\[
\partial \left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \right) \Rightarrow \left\{ \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \right\}, \left\{ \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \right\}, \left\{ \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \right\}
\]
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their boundaries are isomorphic
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their boundaries are isomorphic
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the **graph** of the poset generated by its iterated boundaries

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their **boundaries** are isomorphic
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their boundaries are isomorphic

(1)(2)(3)(4)
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the **graph** of the poset generated by its iterated **boundaries**

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their **boundaries** are isomorphic
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their **boundaries** are isomorphic

Amplitudes 2018 Summer School QMAP, University of California, Davis **Part III: Stratifying On-Shell Cluster Varieties**
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:

- A diagram is **reduced** if $\dim(C) = d(\Gamma)$
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries

Conjectures: (all well-tested)

- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their boundaries are isomorphic
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs
Definitions:

- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries

Conjectures: (all well-tested)

- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their boundaries are isomorphic
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them.
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram.
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries.
- Two varieties are called **equivalent** if they are related by relabeling and/or parity.

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers.
- Two varieties are **isomorphic** iff their boundaries are isomorphic.
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs.
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if $\dim(C) = d(\Gamma)$.
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them.
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram.
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries.
- Two varieties are called **equivalent** if they are related by relabeling and/or parity.

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers.
- Two varieties are **isomorphic** iff their boundaries are isomorphic.
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs.
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries
- Two varieties are called **equivalent** if they are related by relabeling and/or parity

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their **boundaries** are isomorphic
- Two varieties are **equivalent** iff their **stratifications** are isomorphic as graphs
Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
- A diagram is **reduced** if \(\dim(C) = d(\Gamma) \)
- Two varieties are **isomorphic** if there exists a volume-preserving diffeomorphism between them
- The **boundaries** of a variety are those of all reduced diagrams obtained by removing edges from its diagram
- The **stratification** of a variety is the graph of the poset generated by its iterated boundaries
- Two varieties are called **equivalent** if they are related by relabeling and/or parity

Conjectures: (all well-tested)
- Two varieties are **isomorphic** iff their diagrams are related by ‘square moves’/mergers
- Two varieties are **isomorphic** iff their boundaries are isomorphic
- Two varieties are **equivalent** iff their stratifications are isomorphic as graphs
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Equivalence Classes</th>
<th>Planar</th>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’

- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’
 - 1 is planar

- 7 (equivalence classes of) 7-dimensional varieties
 - 3 planar

- 6 (equivalence classes of) 6-dimensional varieties
 - 5 planar

- 5 (equivalence classes of) 5-dimensional varieties
 - 5 planar
 - 4 ‘prime’...
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - 3 planar
- 6 (equivalence classes of) 6-dimensional varieties
 - 5 planar
- 5 (equivalence classes of) 5-dimensional varieties
 - 4 ‘prime’
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties; 5 planar
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties; 5 planar
- 5 (equivalence classes of) 5-dimensional varieties

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties; 5 planar
- 5 (equivalence classes of) 5-dimensional varieties; 5 planar
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties; 5 planar
- 5 (equivalence classes of) 5-dimensional varieties; 5 planar; 4 ‘prime’
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties; 5 planar
- 5 (equivalence classes of) 5-dimensional varieties; 5 planar; 4 ‘prime’
 - ...

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)

- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties; 5 planar
- 5 (equivalence classes of) 5-dimensional varieties; 5 planar; 4 ‘prime’
- . . .
Summary of the Classification of On-Shell Varieties of $G(3,6)$

Classification of On-Shell Varieties for 6-Point NMHV ($k = 3$)
- 24 (equivalence classes of) top-dimensional cells
 - each yields an identity among ‘leading singularities’
 - 22 of which are ‘bridge constructible’; 1 is planar
- 10 (equivalence classes of) 8-dimensional varieties (‘leading singularities’)
 - all of which are ‘bridge constructible’; 1 is planar
 - 3,000 distinct functions; spanned by only 434 of them (3 classes)
- 7 (equivalence classes of) 7-dimensional varieties; 3 planar
- 6 (equivalence classes of) 6-dimensional varieties; 5 planar
- 5 (equivalence classes of) 5-dimensional varieties; 5 planar; 4 ‘prime’
- …
The Classification of Top-Dim On-Shell Varieties of $G(3,6)$
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

The Classification of Top-Dim On-Shell Varieties of $G(3,6)$
The Classification of Top-Dim On-Shell Varieties of $G(3,6)$
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

The Classification of Top-Dim On-Shell Varieties of $G(3,6)$

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
The Classification of Top-Dim On-Shell Varieties of $G(3,6)$
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

The Classification of Top-Dim On-Shell Varieties of $G(3,6)$

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
The Classification of Top-Dim On-Shell Varieties of $G(3,6)$
The Classification of Top-Dim On-Shell Varieties of $G(3,6)$
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

The Classification of Top-Dim On-Shell Varieties of $G(3,6)$

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
The Classification of Top-Dim On-Shell Varieties of $G(3,6)$

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

The Classification of Top-Dim On-Shell Varieties of $G(3,6)$

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties
Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

The Classification of Top-Dim On-Shell Varieties of $G(3,6)$

[Diagram of topologically distinct varieties]
The Classification of Top-Dim On-Shell Varieties of $G(3,6)$
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

The Classification of Top-Dim On-Shell Varieties of $G(3,6)$

Amplitudes 2018 Summer School
QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties
Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

\[
\begin{aligned}
f_1 &\equiv \oint \Omega_1 = \frac{\delta^3 \times 4 (C^* \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})}{(234)(345)(456)(561)(612)}_{C^*} \\
&= \frac{\delta^3 \times 4 (C^* \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})}{\langle 23 \rangle [56] \langle 3|4+5|6]s_{456} \langle 1|5+6|4\rangle [12] [45]}
\end{aligned}
\]

\[
C^* \equiv \begin{pmatrix}
\lambda_1^1 & \lambda_2^1 & \lambda_3^1 & \lambda_4^1 & \lambda_5^1 & \lambda_6^1 \\
\lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \lambda_4^2 & \lambda_5^2 & \lambda_6^2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties
Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

\[
f_1 \equiv \oint \Omega_1 = \left. \frac{\delta^{3\times4}(C^* \cdot \tilde{\eta}) \delta^{2\times2}(\lambda \cdot \tilde{\lambda})}{(234)(345)(456)(561)(612)} \right|_{C^*} \]
\[
= \langle 23 \rangle [56] \langle 3|4+5|6 \rangle s_{456} \langle 1|5+6|4 \rangle [12] [45]
\]

\[
f_2 \equiv \oint \Omega_2 = \left. \frac{(235) \delta^{3\times4}(C^* \cdot \tilde{\eta}) \delta^{2\times2}(\lambda \cdot \tilde{\lambda})}{(136)(156)(234)(245)(256)(345)} \right|_{C^*} \]
\[
= \langle 23 \rangle [64] \delta^{3\times4}(C^* \cdot \tilde{\eta}) \delta^{2\times2}(\lambda \cdot \tilde{\lambda})
\]
\[
= \langle 13 \rangle [45] \langle 1|5+6|4 \rangle \langle 23 \rangle [56] \langle 2|4+5|6 \rangle \langle 2|5+6|4 \rangle \langle 3|4+5|6 \rangle
\]

Amplitudes 2018 Summer School
QMAP, University of California, Davis
Part III: Stratifying On-Shell Cluster Varieties
Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties

Enumeration of All (ten) ‘Leading Singularities’ of \(G(3,6) \)

\[
f_1 \equiv \oint \Omega_1 = \frac{\delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{(234)(345)(456)(561)(612)} \bigg|_{C^*} \\
= \frac{\delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{\langle 23 \rangle [56] \langle 3|4+5|6 \rangle s_{456} \langle 1|5+6|4 \rangle \langle 12 \rangle [45]}
\]

\[
f_2 \equiv \oint \Omega_2 = \frac{(235) \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{(136)(156)(234)(245)(256)(345)} \bigg|_{C^*} \\
= \frac{\delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{\langle 13 \rangle [45] \langle 1|5+6|4 \rangle \langle 23 \rangle [56] \langle 2|4+5|6 \rangle \langle 2|5+6|4 \rangle \langle 3|4+5|6 \rangle}
\]

\[
f_3 \equiv \oint \Omega_4 = \frac{(145) \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{(124)(136)(156)(245)(345)(456)} \bigg|_{C^*} \\
= \frac{\delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{\langle 1|4+5|6 \rangle s_{456}}
\]
Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

$$f_4 \equiv \oint_{(123)=0} \Omega_5 = \left. \frac{(135) \delta^{3 \times 4}(C^* \cdot \tilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})}{(124)(145)(156)(236)(345)(356)} \right|_{C^*} \langle 13 \rangle [64] \delta^{3 \times 4}(C^* \cdot \tilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})$$

$$= \langle 12 \rangle [56] \langle 1|4+5|6 \rangle \langle 1|5+6|4 \rangle [23] [45] \langle 3|4+5|6 \rangle \langle 3|5+6|4 \rangle$$

$$C^* \equiv \begin{pmatrix} \lambda_1^1 & \lambda_2^1 & \lambda_3^1 & \lambda_4^1 & \lambda_5^1 & \lambda_6^1 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \lambda_4^2 & \lambda_5^2 & \lambda_6^2 \\ 0 & 0 & 0 & [56] & [64] & [45] \end{pmatrix}$$
Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

\[
f_4 \equiv \oint \Omega_5 = \frac{(135) \delta^3 \times 4 (C^* \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})}{(124)(145)(156)(236)(345)(356)} |_{C^*}
\]

\[
= \langle 13 \rangle [64] \delta^3 \times 4 (C^* \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})
\]

\[
= \frac{\langle 12 \rangle [56] \langle 1|4+5|6 \rangle \langle 1|5+6|4 \rangle \langle 23 \rangle [45] \langle 3|4+5|6 \rangle \langle 3|5+6|4 \rangle}{\langle 13 \rangle [64] \delta^3 \times 4 (C^* \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})}
\]

\[
f_5 \equiv \oint \Omega_9 = \frac{(125) \delta^3 \times 4 (C^* \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})}{(134)(156)(245)(256)(16)(25) \cap (34)} |_{C^*}
\]

\[
= \langle 12 \rangle [64] \delta^3 \times 4 (C^* \cdot \tilde{\eta}) \delta^2 \times 2 (\lambda \cdot \tilde{\lambda})
\]

\[
= \frac{\langle 13 \rangle [56] \langle 1|5+6|4 \rangle \langle 2|4+5|6 \rangle \langle 2|5+6|4 \rangle \langle 23 \rangle [56] \langle 1|5+6|4 \rangle - \langle 12 \rangle [45] \langle 3|4+5|6 \rangle}{\langle 13 \rangle [56] \langle 1|5+6|4 \rangle \langle 2|4+5|6 \rangle \langle 2|5+6|4 \rangle \langle 23 \rangle [56] \langle 1|5+6|4 \rangle - \langle 12 \rangle [45] \langle 3|4+5|6 \rangle}
\]
Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

| $f_4 \equiv \oint \Omega_5 = \frac{(135) \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{(124)(145)(156)(236)(345)(356)} | C^* \equiv \begin{pmatrix} \lambda_1^1 & \lambda_2^1 & \lambda_3^1 & \lambda_4^1 & \lambda_5^1 & \lambda_6^1 \\ \lambda_2^2 & \lambda_3^2 & \lambda_4^2 & \lambda_5^2 & \lambda_6^2 & 0 \\ \lambda_3^3 & \lambda_4^3 & \lambda_5^3 & \lambda_6^3 & 0 & 0 \\ 0 & 0 & 0 & 56 & 64 & 45 \end{pmatrix} = \langle 13 \rangle [64] \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda}) = \langle 12 \rangle [56] \langle 14+5 | 6 \rangle \langle 15+6 | 4 \rangle \langle 23 \rangle [45] \langle 3 | 4+5 | 6 \rangle \langle 3 | 5+6 | 4 \rangle | 5+6 | 4 \rangle |

| $f_5 \equiv \oint \Omega_9 = \frac{(125) \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{(134)(156)(245)(256)(16(25) \cap (34))} | C^* \equiv \begin{pmatrix} \lambda_1^1 & \lambda_2^1 & \lambda_3^1 & \lambda_4^1 & \lambda_5^1 & \lambda_6^1 \\ \lambda_2^2 & \lambda_3^2 & \lambda_4^2 & \lambda_5^2 & \lambda_6^2 & 0 \\ \lambda_3^3 & \lambda_4^3 & \lambda_5^3 & \lambda_6^3 & 0 & 0 \\ 0 & 0 & 0 & 56 & 64 & 45 \end{pmatrix} = \langle 12 \rangle [64] \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda}) = \langle 13 \rangle [56] \langle 15+6 | 4 \rangle \langle 2 | 4+5 | 6 \rangle \langle 2 | 5+6 | 4 \rangle \langle 23 \rangle [56] \langle 1 | 5+6 | 4 \rangle \langle 1 | 5+6 | 4 \rangle - \langle 12 \rangle [45] \langle 3 | 4+5 | 6 \rangle |

| $f_6 \equiv \oint \Omega_{12} = \frac{(134)^2(456) \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{(124)(145)(146)(156)(234)(345)(346)(356)} | C^* \equiv \begin{pmatrix} \lambda_1^1 & \lambda_2^1 & \lambda_3^1 & \lambda_4^1 & \lambda_5^1 & \lambda_6^1 \\ \lambda_2^2 & \lambda_3^2 & \lambda_4^2 & \lambda_5^2 & \lambda_6^2 & 0 \\ \lambda_3^3 & \lambda_4^3 & \lambda_5^3 & \lambda_6^3 & 0 & 0 \\ 0 & 0 & 0 & 56 & 64 & 45 \end{pmatrix} = \langle 13 \rangle ^2 s_{456} \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda}) = \langle 12 \rangle \langle 1 | 4+5 | 6 \rangle \langle 1 | 4+6 | 5 \rangle \langle 1 | 5+6 | 4 \rangle \langle 23 \rangle \langle 3 | 4+5 | 6 \rangle \langle 3 | 4+6 | 5 \rangle \langle 3 | 5+6 | 4 \rangle | 5+6 | 4 \rangle | 4 \rangle |

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties

Building-Up the Grassmannian Correspondence: On-Shell Varieties
Definitions, Stratifications, and Conjectures
The Classification of On-Shell (Cluster) Varieties
Application: the Stratification of On-Shell Varieties in $G(3,6)$
Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties

Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

$$
 f_7 \equiv \oint_{(123)=0} \Omega_{13} = \left. \frac{(145)^2 \delta^3 \cdot 4 \left(C_\ast \cdot \tilde{\eta} \right) \delta^2 \cdot 2 \left(\lambda \cdot \tilde{\lambda} \right)}{(125)(134)(146)(156)(245)(345)(456)} \right|_{C^\ast} = \\
\frac{\langle 1|4+5|6 \rangle^2 \delta^3 \cdot 4 \left(C_\ast \cdot \tilde{\eta} \right) \delta^2 \cdot 2 \left(\lambda \cdot \tilde{\lambda} \right)}{\langle 12 \rangle [64] \langle 13 \rangle [56] \langle 1|4+6|5 \rangle \langle 1|5+6|4 \rangle \langle 2|4+5|6 \rangle \langle 3|4+5|6 \rangle s_{456}} \\
$$

$$
 C^\ast \equiv \begin{pmatrix} \lambda_1^1 & \lambda_2^1 & \lambda_3^1 & \lambda_4^1 & \lambda_5^1 & \lambda_6^1 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \lambda_4^2 & \lambda_5^2 & \lambda_6^2 \\ 0 & 0 & 0 & [56] & [64] & [45] \end{pmatrix}
$$
Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

\[f_7 \equiv \oint \Omega_{13} = \frac{(145)^2 \delta^3 \times 4 \left(C^* \cdot \tilde{\eta} \right) \delta^2 \times 2 \left(\lambda \cdot \tilde{\lambda} \right)}{(125)(134)(146)(156)(245)(345)(456)} \bigg|_{C^*} \]

\[= \frac{\langle 1 \mid 4+5 \mid 6 \rangle^2 \delta^3 \times 4 \left(C^* \cdot \tilde{\eta} \right) \delta^2 \times 2 \left(\lambda \cdot \tilde{\lambda} \right)}{\langle 12 \rangle [64] \langle 13 \rangle [56] \langle 1 \mid 4+5 \mid 6 \rangle \langle 1 \mid 5+6 \mid 4 \rangle \langle 2 \mid 4+5 \mid 6 \rangle [3 \mid 4+5 \mid 6 \rangle} s_{456} \]

\[f_8 \equiv \oint \Omega_{16} = \int \frac{d\alpha_1}{\alpha_1} \ldots \frac{d\alpha_8}{\alpha_8} \delta^3 \times 4 \left(C(\alpha) \cdot \tilde{\eta} \right) \delta^3 \times 2 \left(C(\alpha) \cdot \tilde{\lambda} \right) \delta^2 \times 3 \left(\lambda \cdot C^\perp(\alpha) \right) \]

\[C(\alpha) \equiv \begin{pmatrix} 1 & \alpha_6 & \alpha_6 & \alpha_7 & 0 & 0 & \alpha_1 \\ 0 & 1 & \alpha_5 + \alpha_7 & 0 & \alpha_2 & \alpha_2 & \alpha_4 \\ \alpha_8 & 0 & 0 & 1 & \alpha_3 & \alpha_3 & \alpha_4 \end{pmatrix} \]
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties
Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

\[
f_7 \equiv \oint \Omega_{13} = \frac{(145)^2 \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{(125)(134)(146)(156)(245)(345)(456)} \bigg|_{C^*} = \frac{\langle 1|4+5|6 \rangle^2 \delta^3 \times 4(C^* \cdot \tilde{\eta}) \delta^2 \times 2(\lambda \cdot \tilde{\lambda})}{\langle 12 \rangle \langle 64 \rangle \langle 13 \rangle \langle 56 \rangle \langle 1|4+6|5 \rangle \langle 15+6|4 \rangle \langle 24+5|6 \rangle \langle 34+5|6 \rangle s_{456}}
\]

\[
f_8 \equiv \oint \Omega_{16} = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_8}{\alpha_8} \delta^3 \times 4(C(\alpha) \cdot \tilde{\eta}) \delta^3 \times 2(C(\alpha) \cdot \tilde{\lambda}) \delta^2 \times 3(\lambda \cdot C^\perp(\alpha))
\]

\[
C(\alpha) \equiv \begin{pmatrix}
1 & \alpha_6 & \alpha_7 & 0 & 0 & \alpha_1 \\
0 & 1 & \alpha_5+\alpha_7 & 0 & \alpha_2 & \alpha_2 \alpha_4 \\
\alpha_8 & 0 & 0 & 1 & \alpha_3 & \alpha_3 \alpha_4
\end{pmatrix}
\]

\[
f_9 \equiv \oint \Omega_{18} = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_8}{\alpha_8} \delta^3 \times 4(C(\alpha) \cdot \tilde{\eta}) \delta^3 \times 2(C(\alpha) \cdot \tilde{\lambda}) \delta^2 \times 3(\lambda \cdot C^\perp(\alpha))
\]

\[
C(\alpha) \equiv \begin{pmatrix}
1 & \alpha_5 & \alpha_7 & 0 & 0 & \alpha_1 \\
0 & 1 & \alpha_4 & 0 & \alpha_2 & \alpha_2 \alpha_6 \\
\alpha_8 & 0 & 0 & 1 & \alpha_3 & \alpha_3 \alpha_6
\end{pmatrix}
\]
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties
Warm-Up: Classifying On-Shell Functions of $G(2,n)$
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in $G(3,6)$

Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

\[
f_{10} \equiv \oint_{z = 0} \Omega_{20} = \int \frac{d\alpha_1}{\alpha_1} \wedge \ldots \wedge \frac{d\alpha_8}{\alpha_8} \delta^{3 \times 4} (C(\alpha) \cdot \tilde{\eta}) \delta^{3 \times 2} (C(\alpha) \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^\perp (\alpha))
\]

\[
C(\alpha) \equiv \begin{pmatrix}
\alpha_6 & \alpha_8 & \alpha_1 & 1 & \alpha_6 & \alpha_1 & \alpha_7 & 0 \\
\alpha_8 & 0 & 0 & 1 & \alpha_5 & \alpha_4 \\
\alpha_3 & \alpha_2 & 0 & 0 & \alpha_2 & \alpha_7 & 1
\end{pmatrix}
\]
Enumeration of All (ten) ‘Leading Singularities’ of $G(3,6)$

$$f_{10} \equiv \oint_{z=0} \Omega_{20} = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_8}{\alpha_8} \delta^{3\times4}(C(\alpha) \cdot \tilde{\eta}) \delta^{3\times2}(C(\alpha) \cdot \tilde{\lambda}) \delta^{2\times3}(\lambda \cdot C^\perp(\alpha))$$

$$C(\alpha) \equiv \begin{pmatrix} \alpha_6 \alpha_8 & \alpha_1 & 1 & \alpha_6 & \alpha_1 & \alpha_7 & 0 \\ \alpha_8 & 0 & 0 & 1 & \alpha_5 & \alpha_4 \\ \alpha_3 & \alpha_2 & 0 & 0 & \alpha_2 & \alpha_7 & 1 \end{pmatrix}$$
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 LIPS_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C, p, h) \]
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \{strata \(C \in G(k, n) \), volume-form \(\Omega_C \)\}
- volume-preserving diffeomorphisms
 - cluster coordinate mutations
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \(\{ \text{strata } C \in G(k, n), \text{ volume-form } \Omega_C \} \)
- volume-preserving diffeomorphisms
 - cluster coordinate mutations
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i,q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C,p,h) \]

On-Shell Physics

- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry

- \(\{ \text{strata } C \in G(k,n), \text{ volume-form } \Omega_C \} \)
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)

- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
 - do these extend to entire amplitudes?
- do loop-level recursion relations exist?
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 LIPS_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C, p, h) \]

On-Shell Physics

- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry

- \{strata \ C \in G(k, n), volume-form \ \Omega_C\}
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)

- how many functions exist?
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \, \delta(C, p, h) \]

On-Shell Physics

• on-shell diagrams

• physical symmetries
 – trivial symmetries (identities)

Grassmannian Geometry

• \{strata \(C \in G(k, n) \), volume-form \(\Omega_C \}\}

• volume-preserving diffeomorphisms
 – cluster coordinate mutations

Important Open Questions (for math and physics)

• how many functions exist? (how to name them?)
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma = \prod_i \left(\sum_{h_i, \mathbf{q}_i} \int d^3 \mathbf{LIPS}_i \right) \prod_v A_v = \int \Omega_C \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \(\{ \text{strata } C \in G(k, n), \text{ volume-form } \Omega_C \} \)
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)
- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \, \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \(\{ \text{strata } C \in G(k, n), \text{volume-form } \Omega_C \} \)
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)
- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_{\Gamma} \equiv \prod_{i} \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_{v} A_v \equiv \int \Omega_C \ \delta(C, p, h) \]

On-Shell Physics

- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry

- \{strata \ C \in G(k, n), \ volume-form \ \Omega_C\}
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)

- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
 - do these extend to entire amplitudes?
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \{strata \(C \in G(k, n) \), volume-form \(\Omega_C \}\)
 - volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)
- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
 - do these extend to entire \emph{amplitudes}?
- do loop-level recursion relations exist?
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \{strata \(C \in G(k, n) \), volume-form \(\Omega_C \)}
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)
- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
 - do these extend to entire amplitudes?
- do loop-level recursion relations exist?
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i,q_i} \int d^3LIPS_i \right) \prod_v A_v \equiv \int \Omega_C \, \delta(C, p, h) \]

On-Shell Physics

- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry

- \{strata \(C \in G(k, n) \), volume-form \(\Omega_C \)\}
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)

- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
 - do these extend to entire amplitudes?
- do loop-level recursion relations exist?
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h, q_i} \int d^3 \text{LIPS}_i \right) \prod_v A_v \equiv \int \Omega_C \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \(\{ \text{strata } C \in G(k, n), \text{ volume-form } \Omega_C \} \)
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)
- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
 - do these extend to entire amplitudes?
- do loop-level recursion relations exist?
On-Shell Physics/Grassmannian Geometry Correspondence

\[f_\Gamma \equiv \prod_i \left(\sum_{h_i, q_i} \int d^3 \text{LIPS}_i \right) \prod_v \mathcal{A}_v \equiv \int \Omega_C \delta(C, p, h) \]

On-Shell Physics
- on-shell diagrams
- physical symmetries
 - trivial symmetries (identities)

Grassmannian Geometry
- \{\text{strata } C \in G(k, n), \text{ volume-form } \Omega_C\}
- volume-preserving diffeomorphisms
 - cluster coordinate mutations

Important Open Questions (for math and physics)
- how many functions exist? (how to name them?)
- what (functional) relations do they satisfy?
- what are their (infinite-dimensional) symmetries?
 - do these extend to entire amplitudes?
- do loop-level recursion relations exist?
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROVOV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

Cambridge University Press
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Part III: Stratifying On-Shell Cluster Varieties
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROVOV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHARAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS

Amplitudes 2018 Summer School QMAP, University of California, Davis
Part III: Stratifying On-Shell Cluster Varieties
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROVOV
ALEXANDER POSTNIKOV
JAROSLAV TRNKÁ

CAMBRIDGE UNIVERSITY PRESS
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHARAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

Amplitudes 2018 Summer School QMAP, University of California, Davis
Part III: Stratifying On-Shell Cluster Varieties
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHazo
ALEXANDER GONCHARAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS

Amplitudes 2018 Summer School QMAP, University of California, Davis

Part III: Stratifying On-Shell Cluster Varieties
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROVOV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS

Amplitudes 2018 Summer School QMAP, University of California, Davis
Part III: Stratifying On-Shell Cluster Varieties
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Part III: Stratifying On-Shell Cluster Varieties
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHARAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

CAMBRIDGE UNIVERSITY PRESS
GRASSMANNIAN GEOMETRY OF SCATTERING AMPLITUDES

NIMA ARKANI-HAMED
JACOB BOURJAILY
FREDDY CACHAZO
ALEXANDER GONCHAROV
ALEXANDER POSTNIKOV
JAROSLAV TRNKA

Cambridge University Press

Part III: Stratifying On-Shell Cluster Varieties
Grassmannian Geometry of Scattering Amplitudes

Nima Arkani-Hamed
Jacob Bourjaily
Freddy Cachazo
Alexander Goncharov
Alexander Postnikov
Jaroslav Trnka

Cambridge University Press
The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties
The Classification of On-Shell (Cluster) Varieties

Part III: Stratifying On-Shell Cluster Varieties