Amplituhedron meets Jeffrey-Kirwan Residue

Matteo Parisi

University of Oxford
Mathematical Institute

Amplitudes 2018 Summer School
UC Davis, QMAP, June 12, 2018

with Livia Ferro and Tomasz Łukowski, arXiv:1805.01301
The Amplituhedron \mathcal{A} - a recently discovered mathematical object:

- is a generalization of polytopes inside the Grassmannian
- has elements of the form $Y = C \cdot Z$
- has Positivity: C, Z have all ordered maximal minors positive
- is equipped with a volume function Ω such that Ω has logarithmic singularities at all boundaries of \mathcal{A}

Tree Amplitudes in $\mathcal{N} = 4$ SYM can be extracted from Ω

Geometrically

Triangulate \mathcal{A} & Sum over volumes of triangles

$$\Omega = [123] + [134] + [145]$$

Analytically \leftarrow

Evaluate a contour integral

$$\Omega = \int_{\gamma} \omega$$

different triangulations \leftrightarrow different contours
The **Jeffrey-Kirwan Residue** is an operation on Differential Forms [Jeffrey, Kirwan, ’95]

$$\omega = \frac{dx_1 \wedge \ldots \wedge dx_r}{\beta_1(x) \ldots \beta_n(x)}, \quad \beta_i(x) = \beta_i \cdot x + \alpha_i$$

- For $B = \{\beta_i\}$ and fixed $\eta \in \mathbb{R}^r$, it is defined as

$$\text{JKRes}^{B,\eta}_\omega = \sum_{\text{Cone} \ni \eta} \text{Res}_{\text{Cone}} \omega$$

- **Remarkable Property**

JKRes is *independent* from the chamber

- e.g. $\text{JKRes}^{B,\eta_1} = \text{Res}_{C_{25}} + \text{Res}_{C_{45}} + \text{Res}_{C_{23}}$
- \parallel
 - $\text{JKRes}^{B,\eta_2} = \text{Res}_{C_{45}} + \text{Res}_{C_{12}} + \text{Res}_{C_{42}}$
For Cyclic Polytopes and Conjugates (not Polytopes!):

\[\Omega = \text{JKRes}^{B,\eta}_\omega \]

[Ferro, Lukowski, MP, '18]

- Positivity of Amplituhedron \(\leftrightarrow \) configuration of Chambers

\rightarrow Geometrically

- each Chamber

triangulation of \(\mathcal{A} \)

representaion of \(\Omega \)

\[\text{JKRes}^{B,\eta_1}_\omega = [134] + [123] + [145] \]

\[\|

\[\text{JKRes}^{B,\eta_2}_\omega = [345] + [351] + [312] \]

- adjacent Chambers

\[\begin{array}{c}
\begin{array}{c}
2 \\
1 \\
3 \\
4 \\
5 \\
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
2 \\
1 \\
3 \\
4 \\
5 \\
\end{array}
\end{array} \]

Bistellar Flip

Global Residue Theorem
Amplituhedron meets Jeffrey-Kirwan Residue

For **Cyclic Polytopes** and **Conjugates** (*not Polytopes!*):

\[\Omega = \text{JKRes}^{B,\eta}_\omega \]

[Ferro, Lukowski, MP, ’18]

- **Positivity** of Amplituhedron \(\leftrightarrow\) **configuration** of **Chambers**

 \[\rightarrow \text{Geometrically} \]
 \[\text{Analytically} \leftarrow \]

- each Chamber

 triangulation of \(A\)

 \[\text{JKRes}^{B,\eta_1}_\omega = [134] + [123] + [145] \]

 \[\text{JKRes}^{B,\eta_2}_\omega = [345] + [351] + [312] \]

- adjacent Chambers

\[\boxed{=} \]

Bistellar Flip

\[[134] + [145] = [135] + [345] \]

Global Residue Theorem

Secondary Polytope \(\Sigma(\mathcal{P})\):

vertices are triangulations of \(\mathcal{P}\)

e.g. \(\Sigma(\text{n-gon}) = \text{Associahedron}\)

\[\mathcal{P} \rightarrow A \]

Secondary Amplituhedron
The Jeffrey-Kirwan Residue

- computes the volume of polytopes and their parity conjugates (not polytopes!)
- encodes all triangulations, in a triangulation-independent way
- points at the Secondary Amplituhedron, generalising Secondary Polytopes

Open Questions

- What is the generalisation of the Jeffrey-Kirwan Residue for all other Amplituhedra, i.e. other helicity sectors and loops?
- Can we find the Secondary Amplituhedron in all these cases?
 → many new representations of Scattering Amplitudes!
\[\Sigma(\text{Hexagon}) = \text{Pentagon} \]

Thank you!