Unifying Tree Super-Amplitudes in 6D: Branes, SYM, and SUGRA

Matthew Heydeman1, Alfredo Guevara2,3, Sebastian Mizera2

1California Institute of Technology
2Perimeter Institute for Theoretical Physics
3CECs Valdivia

Amplitudes Summer School - June 12, 2018
Main ideas

- Why 6D? The existence of chiral gauge theories in 6D explains and unifies many properties of 4D supersymmetric gauge theories.
Main ideas

- Why 6D? The existence of chiral gauge theories in 6D explains and unifies many properties of 4D supersymmetric gauge theories.
- Goal: Write down the complete tree-level S-matrix for maximally supersymmetric gauge theories, gravity, and effective field theory in six spacetime dimensions.
Main ideas

- Why 6D? The existence of chiral gauge theories in 6D explains and unifies many properties of 4D supersymmetric gauge theories.

- Goal: Write down the complete tree-level S-matrix for maximally supersymmetric gauge theories, gravity, and effective field theory in six spacetime dimensions.

- The main tool is to boost Witten’s twistor string from $4 \rightarrow 6$ dimensions. The n-particle amplitude is an integral over the n-punctured Riemann sphere (possibly with other moduli \mathcal{M}):

\[
A_n \sim \int \frac{d^n\sigma d\mathcal{M}}{\text{Vol}(G)} \langle \text{String Correlation Function} \rangle
\]

We find a unified description of 6D theories in this form.
Open Strings and Dp-branes

- Quantization of open strings on Dirichlet p-brane $\rightarrow p + 1$ dimensional vector multiplet. Maximal SUSY for spins ≤ 1.

$S \sim T \int d^{p+1}x \sqrt{-\det(g + F)}$
Quantization of open strings on Dirichlet p-brane $\rightarrow p + 1$ dimensional vector multiplet. Maximal SUSY for spins ≤ 1.

For $\ell_s \rightarrow 0$, this is a free theory, but finite ℓ_s corrections give supersymmetric Dirac-Born-Infeld theory (brane action):

$$S \sim T \int d^{p+1}x \sqrt{-\det(g + F)}$$
Multiple Branes \rightarrow Super Yang-Mills

N Dp Branes

KLT \rightarrow $p + 1$-dimensional Maximal Supergravity
(Ex: $\mathcal{N} = 4$ SYM \rightarrow $\mathcal{N} = 8$ SUGRA)

Scalar Vevs
Twistor strings and rational maps

- Witten’s observation: Scattering of $\mathcal{N} = 4$ SYM (field theory) computed exactly by a topological string theory! Open B-Model on supertwistor space.
- Amplitude supported on punctured D1 strings wrapping curves, integrate correlator over punctures and moduli of maps:

$$
\lambda^\alpha(z) = \sum_{k=0}^{d} \rho^\alpha_k z^k \\
\tilde{\lambda}^{\dot{\alpha}}(z) = \sum_{k=0}^{\tilde{d}} \tilde{\rho}^{\dot{\alpha}}_k z^k
$$

$$
d + \tilde{d} = n - 2 \\
\tilde{d} - d = \text{helicity violation}
$$
A Six-Dimensional Surprise

- In classifying super-Poincare and superconformal algebras, one finds there are actually *two different* maximal theories of spin-1 fields!
A Six-Dimensional Surprise

- In classifying super-Poincare and superconformal algebras, one finds there are actually \textit{two different} maximal theories of spin-1 fields!

- Chiral and anti-chiral pseudo-real spinors: \((p, q)\) SUSY.

 \((1, 1) \rightarrow \text{D5-brane and 6D SYM. But } (2, 0) \rightarrow \text{self-dual (chiral) 2-form gauge field } B_{\mu\nu}. \ H = dB = \ast H \rightarrow \text{no candidate action!} \)
The challenge:

- The Witten twistor string relied crucially on the 4D spinor helicity variables to construct maps. In 6D there are no helicity sectors due to the little group.
- The simplest 6D generalization turn out to be the single D5 and M5-brane EFTs. Maximal Yang-Mills and SUGRA are harder due to the structure of the maps.
- Apply to lower dimensions: 5D SYM/SUGRA and 4D Coulomb Branch amplitudes
Towards Rational Maps: Spinor Variables in 6D

- Momentum vectors can be described as bispinors of \(\text{Spin}(5, 1) \sim SU^*(4) \), \(p^\mu \sim p^{AB} \) with \(A, B = 1, \ldots, 4 \).

- Little group = \(SU(2) \times SU(2) \). We introduce \(\lambda^A_{ia} \) such that

\[
p^{AB}_i = \langle \lambda^A_i \lambda^B_i \rangle = \epsilon_{ab} \lambda^{A,a}_i \lambda^{B,b}_i = \lambda^A_i \lambda^-_i - \lambda^-_i \lambda^+_i.
\]
Towards Rational Maps: Spinor Variables in 6D

- Momentum vectors can be described as bispinors of $\text{Spin}(5, 1) \sim SU^*(4)$, $p^\mu \sim p^{AB}$ with $A, B = 1, \ldots, 4$.
- Little group $= SU(2) \times SU(2)$. We introduce λ_{ia}^A such that

$$p_{i}^{AB} = \langle \lambda_{i}^{A} \lambda_{i}^{B} \rangle = \epsilon_{ab} \lambda_{i}^{A,a} \lambda_{i}^{B,b} = \lambda_{i}^{A+} \lambda_{i}^{B-} - \lambda_{i}^{A-} \lambda_{i}^{B+}.$$
Towards Rational Maps: Spinor Variables in 6D

- Momentum vectors can be described as bispinors of $Spin(5,1) \sim SU^*(4)$, $p^\mu \sim p^{AB}$ with $A,B = 1, \ldots, 4$.
- Little group = $SU(2) \times SU(2)$. We introduce λ^A_{ia} such that

$$p^{AB}_i = \langle \lambda^A_i \lambda^B_i \rangle = \epsilon_{ab} \lambda^A_i a \lambda^B_i b = \lambda^+_i \lambda^-_i - \lambda^-_i \lambda^+_i.$$

- Lorentz invariants:

$$\langle \lambda^a_i \lambda^b_j \lambda^c_k \lambda^d_l \rangle = \epsilon_{ABCD} \lambda^A_i a \lambda^B_j b \lambda^C_k c \lambda^D_l d.$$
Towards Rational Maps: Spinor Variables in 6D

- Momentum vectors can be described as bispinors of $Spin(5, 1) \sim SU^*(4)$, $p^\mu \sim p^{AB}$ with $A, B = 1, \ldots, 4$.
- Little group $= SU(2) \times SU(2)$. We introduce λ^A_{ia} such that
 \[p^{AB}_i = \langle \lambda^A_i \lambda^B_i \rangle = \epsilon_{ab} \lambda^A_i \lambda^B_i = \lambda^A_i \lambda^B_i - \lambda^A_i \lambda^B_i. \]
- Lorentz invariants:
 \[\langle \lambda^a_i \lambda^b_j \lambda^c_k \lambda^d_l \rangle = \epsilon_{ABCD} \lambda^A_i \lambda^B_j \lambda^C_k \lambda^D_l, \]
- E.g., 4 gluon scattering:
 \[\mathcal{A}(g_1^{a\hat{a}}, g_2^{b\hat{b}}, g_3^{c\hat{c}}, g_4^{d\hat{d}}) = \frac{\langle 1^a 2^b 3^c 4^d \rangle [1^{\hat{a}} 2^{\hat{b}} 3^{\hat{c}} 4^{\hat{d}}]}{s_{12} s_{23}}. \]
Promote spinor variables to polynomials. Construct the null map:

$$z \in \mathbb{CP}^1 \longrightarrow p^{AB}(z) = \langle \rho^A(z), \rho^B(z) \rangle$$
The most natural choice consistent with $SL(2, \mathbb{C})$ is

\[
\rho^{A,a}(z) = \sum_{k=0}^{d=\left\lceil \frac{n}{2} \right\rceil - 1} \rho_{k}^{A,a} z^{k}.
\]

where for odd n we require the degenerate condition $\rho_{d}^{A,a} = \omega^{A} \xi^{a}!$

These maps are to be determined by the condition

\[
p_{i}^{AB} = \frac{\langle \rho^{A}(\sigma_i), \rho^{B}(\sigma_i) \rangle}{\prod_{j \neq i} \sigma_{ij}}
\]

which also fixes the punctures $\{\sigma_i\}$ in \mathbb{CP}^1 (i.e. Scattering Equations)
6D Amplitude

We are now ready to construct the amplitudes for our favorite 6D theories by integrating over the moduli space of maps!

\[A_{6D} = \int \frac{\prod d\sigma_i d\rho_k}{\text{Vol}(G)(\prod \sigma_{ij})^2} \prod_{i=1}^{n} \delta^6 \left(p_{i}^{AB} - \frac{\langle \rho^A(\sigma_i), \rho^B(\sigma_i) \rangle}{\prod_{j \neq i} \sigma_{ij}} \right) \times \mathcal{I_L}\mathcal{I_R} \]

where \(\text{Vol}(G) \) stands for the redundancies of the moduli space. For odd \(n \) an enlarged symmetry group emerges. We find that the delta functions completely localize the integration variables on \((n - 3)!\) points of the moduli.
M5, D5-Branes and SYM

The integrands $\mathcal{I}_{L,R}$ depend on the theory. They carry the fermionic components of the amplitude. This are defined in analogous way to the bosonic delta functions:

$$\Delta_{F} = \int \prod_{k=0}^{d} d\chi_{k} \prod_{i=1}^{n} \delta^{4} \left(q_{i}^{A} - \frac{\langle \rho^{A}(\sigma_{i}), \chi(\sigma_{i}) \rangle}{\prod_{j \neq i} \sigma_{ij}} \right)$$

where q_{i}^{A} is now the supermomenta of the i-th particle.

We have half-integrands:

$$\mathcal{I}^{N=\langle 2,0 \rangle} = \text{Pf} \cdot A_{n} \times \Delta_{F}^{2}, \quad \mathcal{I}^{N=\langle 1,1 \rangle} = \text{Pf} \cdot A_{n} \times \Delta_{F} \tilde{\Delta}_{F}$$

$$\mathcal{I}^{\text{abelian}} = (\text{Pf} \cdot A_{n})^{2}, \quad \mathcal{I}^{\text{non-abelian}} = \frac{\text{Tr} \left(T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}} \right)}{\sigma_{12} \sigma_{23} \cdots \sigma_{n1}}.$$

where $\text{Pf} \cdot A_{n}$ is constructed from minors of $(A_{n})_{ij} := \frac{p_{i} \cdot p_{j}}{\sigma_{ij}}$.
Use the half-integrands as building blocks for amplitudes:

\[
\int d\mu_{\text{maps}} \mathcal{I}_L \mathcal{I}_R \quad \mathcal{I}_L \quad \mathcal{I}_R
\]

<table>
<thead>
<tr>
<th></th>
<th>(\mathcal{I}_L)</th>
<th>(\mathcal{I}_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use the half-integrands as building blocks for amplitudes:

\[
\int d\mu_{\text{maps}} \mathcal{I}_L \mathcal{I}_R \quad \mathcal{I}_L \quad \mathcal{I}_R \\
\mathcal{A}^{D5-\text{branes}} \quad \mathcal{I}_{\text{abelian}} \quad \mathcal{I}^{\mathcal{N}=(1,1)}
\]
Use the half-integrands as building blocks for amplitudes:

\[
\int d\mu_{\text{maps}} \mathcal{I}_L \mathcal{I}_R
\]

<table>
<thead>
<tr>
<th>(\mathcal{A}^{D5-\text{branes}})</th>
<th>(\mathcal{I}_{\text{abelian}})</th>
<th>(\mathcal{I}_{\mathcal{N}=(1,1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{A}^{M5-\text{branes}})</td>
<td>(\mathcal{I}_{\text{abelian}})</td>
<td>(\mathcal{I}_{\mathcal{N}=(2,0)})</td>
</tr>
</tbody>
</table>

N = (2,2) SUGRA is a double-copy of N = (1,1) SYM.

Perturbative amplitudes in non-abelian N = (2,0) theory should vanish; our formula computes some other non-abelian object with on-shell supersymmetry.
Use the half-integrands as building blocks for amplitudes:

\[
\int d\mu_{\text{maps}} \mathcal{I}_L \mathcal{I}_R
\]

<table>
<thead>
<tr>
<th>(\mathcal{A})</th>
<th>(\mathcal{I})</th>
<th>(\mathcal{I})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^5)-branes</td>
<td>(\mathcal{I})_{\text{abelian}}</td>
<td>(\mathcal{I})_{\mathcal{N}=(1,1)}</td>
</tr>
<tr>
<td>(M^5)-branes</td>
<td>(\mathcal{I})_{\text{abelian}}</td>
<td>(\mathcal{I})_{\mathcal{N}=(2,0)}</td>
</tr>
<tr>
<td>(N=(1,1)) SYM</td>
<td>(\mathcal{I})_{\text{non-abelian}}</td>
<td>(\mathcal{I})_{\mathcal{N}=(1,1)}</td>
</tr>
</tbody>
</table>
Use the half-integrands as building blocks for amplitudes:

\[
\int d\mu_{\text{maps}} I_L I_R
\]

<table>
<thead>
<tr>
<th>(\mathcal{A})</th>
<th>(I_L)</th>
<th>(I_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D5\text{-branes})</td>
<td>(I_{\text{abelian}})</td>
<td>(I_N=(1,1))</td>
</tr>
<tr>
<td>(M5\text{-branes})</td>
<td>(I_{\text{abelian}})</td>
<td>(I_N=(2,0))</td>
</tr>
<tr>
<td>(\mathcal{A}^{\mathcal{N}=(1,1) \text{ SYM}})</td>
<td>(I_{\text{non-abelian}})</td>
<td>(I_N=(1,1))</td>
</tr>
<tr>
<td>(\mathcal{A}^{\mathcal{N}=(2,2) \text{ SUGRA}})</td>
<td>(I_N=(1,1))</td>
<td>(I_N=(1,1))</td>
</tr>
</tbody>
</table>

\(\mathcal{N}=(2,2) \text{ SUGRA} \) is a double-copy of \(\mathcal{N}=(1,1) \text{ SYM} \)
Use the half-integrands as building blocks for amplitudes:

\[
\int d\mu_{\text{maps}} \mathcal{I}_L \mathcal{I}_R
\]

<table>
<thead>
<tr>
<th>(\mathcal{A})</th>
<th>(\mathcal{I}_L)</th>
<th>(\mathcal{I}_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{A}^{D5-\text{branes}})</td>
<td>(\mathcal{I}_\text{abelian})</td>
<td>(\mathcal{I}_{\mathcal{N}=(1,1)})</td>
</tr>
<tr>
<td>(\mathcal{A}^{M5-\text{branes}})</td>
<td>(\mathcal{I}_\text{abelian})</td>
<td>(\mathcal{I}_{\mathcal{N}=(2,0)})</td>
</tr>
<tr>
<td>(\mathcal{A}^{\mathcal{N}=(1,1) \text{ SYM}})</td>
<td>(\mathcal{I}_\text{non-abelian})</td>
<td>(\mathcal{I}_{\mathcal{N}=(1,1)})</td>
</tr>
<tr>
<td>(\mathcal{A}^{\mathcal{N}=(2,2) \text{ SUGRA}})</td>
<td>(\mathcal{I}_\text{non-abelian})</td>
<td>(\mathcal{I}_{\mathcal{N}=(2,0)})</td>
</tr>
<tr>
<td>(\mathcal{A}^{\mathcal{N}=(2,2) \text{ SUGRA}})</td>
<td>(\mathcal{I}_{\mathcal{N}=(1,1)})</td>
<td>(\mathcal{I}_{\mathcal{N}=(1,1)})</td>
</tr>
</tbody>
</table>

\(\mathcal{N} = (2, 2) \) SUGRA is a double-copy of \(\mathcal{N} = (1, 1) \) SYM
Use the half-integrands as building blocks for amplitudes:

\[
\int d\mu_{\text{maps}} \mathcal{I}_L \mathcal{I}_R
\]

<table>
<thead>
<tr>
<th>\mathcal{A}</th>
<th>\mathcal{I}_L</th>
<th>\mathcal{I}_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{A}^{D5-\text{branes}}</td>
<td>\mathcal{I}_{\text{abelian}}</td>
<td>\mathcal{I}_{\mathcal{N}=(1,1)}</td>
</tr>
<tr>
<td>\mathcal{A}^{M5-\text{branes}}</td>
<td>\mathcal{I}_{\text{abelian}}</td>
<td>\mathcal{I}_{\mathcal{N}=(2,0)}</td>
</tr>
<tr>
<td>\mathcal{A}^{\mathcal{N}=(1,1) \text{ SYM}}</td>
<td>\mathcal{I}_{\text{non-abelian}}</td>
<td>\mathcal{I}_{\mathcal{N}=(1,1)}</td>
</tr>
<tr>
<td>\mathcal{A}^{\mathcal{N}=(2,2) \text{ SUGRA}}</td>
<td>\mathcal{I}_{\mathcal{N}=(1,1)}</td>
<td>\mathcal{I}_{\mathcal{N}=(1,1)}</td>
</tr>
</tbody>
</table>

- \mathcal{N} = (2, 2) \text{ SUGRA} is a double-copy of \mathcal{N} = (1, 1) \text{ SYM}
- Perturbative amplitudes in non-abelian \mathcal{N} = (2, 0) theory should vanish; our formula computes some other non-abelian object with \mathcal{N} = (2, 0) on-shell supersymmetry
We find new amplitudes for mixed theories using the half-integrand:

\[I^{\text{semi-abelian}} = \frac{\text{Tr}(T^{a_1}T^{a_2}\cdots T^{a_k})}{\sigma_1\sigma_2\cdots\sigma_k}(\text{Pf}A_{k+1,...,n})^2, \]
We find new amplitudes for mixed theories using the half-integrand:

\[\mathcal{I}^{\text{semi-abelian}} = \frac{\text{Tr}(T^{a_1} T^{a_2} \cdots T^{a_k})}{\sigma_{12} \sigma_{23} \cdots \sigma_{k1}} (\text{Pf} A_{k+1, \ldots, n})^2, \]

which interpolates between \(\mathcal{I}^{\text{abelian}} \) when \(k = 0 \) and \(\mathcal{I}^{\text{non-abelian}} \) when \(k = n \).
We find new amplitudes for mixed theories using the half-integrand:

$$\mathcal{I}^{\text{semi-abelian}} = \frac{\text{Tr} (T^{a_1} T^{a_2} \cdots T^{a_k})}{\sigma_{12} \sigma_{23} \cdots \sigma_{k1}} (\text{Pf} A_{k+1,\ldots,n})^2,$$

which interpolates between $\mathcal{I}^{\text{abelian}}$ when $k = 0$ and $\mathcal{I}^{\text{non-abelian}}$ when $k = n$.

$$\mathcal{A}^{\text{D5-branes } \oplus \text{SYM}} = \int d\mu_{\text{maps}} \mathcal{I}^{\text{semi-abelian}} \mathcal{I}^\mathcal{N}=(1,1)$$
We find new amplitudes for mixed theories using the half-integrand:

\[I_{\text{semi-abelian}} = \frac{\text{Tr}(T^{a_1} T^{a_2} \cdots T^{a_k})}{\sigma_{12} \sigma_{23} \cdots \sigma_{k1}} (\text{Pf} A_{k+1,\ldots,n})^2, \]

which interpolates between \(I_{\text{abelian}} \) when \(k = 0 \) and \(I_{\text{non-abelian}} \) when \(k = n \).

\[\mathcal{A}_{D5-\text{branes} \oplus SYM} = \int d\mu_{\text{maps}} I_{\text{semi-abelian}} I^N=(1,1) \]

gives an S-matrix of an interacting theory between the abelian and non-abelian sectors of D5-branes.
Even if you couldn't care less about 6D, we have something for you: Embed 4D massive momenta into 6D massless ones as follows

\[\lambda^{A,a} = \begin{pmatrix} \frac{m_{\mu\alpha}}{\langle \mu \lambda \rangle} & \lambda_\alpha \\ \tilde{\lambda} \tilde{\alpha} & \frac{m_{\tilde{\mu} \tilde{\alpha}}}{[\tilde{\lambda} \tilde{\mu}]} \end{pmatrix} \implies p_{\alpha \dot{\alpha}} = \lambda_\alpha \tilde{\lambda} \dot{\alpha} + m^2 \frac{\mu_{\alpha \tilde{\mu} \tilde{\alpha}}}{\langle \lambda \mu \rangle [\tilde{\lambda} \tilde{\mu}]} . \]
Even if you couldn't care less about 6D, we have something for you: Embed 4D massive momenta into 6D massless ones as follows

$$\lambda^{A,a} = \left(\begin{array}{c} \frac{m^{\mu\alpha}}{\langle \mu \lambda \rangle} \\ \frac{m^{\tilde{\mu}\tilde{\alpha}}}{\langle \tilde{\lambda} \tilde{\mu} \rangle} \end{array} \right) \quad \Rightarrow \quad p_{\alpha\dot{\alpha}} = \lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}} + m^2 \frac{\mu_{\alpha} \tilde{\mu}_{\dot{\alpha}}}{\langle \lambda \mu \rangle [\tilde{\lambda} \tilde{\mu}]}.$$

This gives us a formula for massive amplitudes in 4D for free!
Even if you couldn’t care less about 6D, we have something for you: Embed 4D massive momenta into 6D massless ones as follows

\[
\lambda^{A,a} = \left(\frac{m_{\mu\alpha}}{\langle \mu \lambda \rangle} \lambda^{\alpha}, \frac{m_{\tilde{\mu}\dot{\alpha}}}{\langle \tilde{\lambda} \tilde{\mu} \rangle} \tilde{\lambda}^{\dot{\alpha}} \right) \implies p_{\alpha\dot{\alpha}} = \lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}} + m^2 \frac{\mu_{\alpha\tilde{\mu}} \langle \lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}} \rangle}{\langle \lambda \mu \rangle \langle \tilde{\lambda} \tilde{\mu} \rangle}.
\]

This gives us a formula for massive amplitudes in 4D for free!

- We can do concrete calculations, for instance, 4-pt amplitude of W-bosons and gluons:

\[
A(W_1^+, \overline{W}_2^-, g_3^-, g_4^-) = \frac{m^2 [1\mu]^2 \langle 34 \rangle^2}{[2\mu]^2 s_{12} (s_{23} - m^2)}.
\]
Even if you couldn’t care less about 6D, we have something for you: Embed 4D massive momenta into 6D massless ones as follows

\[
\lambda^{A,a} = \left(\frac{m_{\mu\alpha}}{\langle \mu\lambda \rangle} \lambda_\alpha, \frac{m_{\tilde{\mu}\dot{\alpha}}}{[\lambda\tilde{\mu}]} \tilde{\lambda}\dot{\alpha} \right) \quad \implies \quad p_{\alpha\dot{\alpha}} = \lambda_\alpha \tilde{\lambda}\dot{\alpha} + m^2 \frac{\mu_\alpha\tilde{\mu}\dot{\alpha}}{\langle \lambda\mu \rangle [\tilde{\lambda}\tilde{\mu}]}.
\]

This gives us a formula for massive amplitudes in 4D for free!

- We can do concrete calculations, for instance, 4-pt amplitude of W-bosons and gluons:

\[
\mathcal{A}(W_1^+, W_2^-, g_3^-, g_4^-) = \frac{m^2 [1\mu]^2 \langle 34 \rangle^2}{[2\mu]^2 s_{12} (s_{23} - m^2)}.
\]

- Leaves many applications for computing loop integrands
If you want to know more check out:

- “M5-Brane and D-Brane Scattering Amplitudes”
 MTH, J.H. Schwarz, C. Wen [hep-th/1710.02170]

- “The S Matrix of 6D Super Yang–Mills and Maximal Supergravity from Rational Maps”
 F. Cachazo, AG, MTH, SM, J.H. Schwarz, C. Wen [hep-th/1805.11111]

- Alfredo’s and Matt’s poster at SLAC next week
If you want to know more check out:

- “M5-Brane and D-Brane Scattering Amplitudes”
 MTH, J.H. Schwarz, C. Wen [hep-th/1710.02170]

- “The S Matrix of 6D Super Yang–Mills and Maximal Supergravity from Rational Maps”
 F. Cachazo, AG, MTH, SM, J.H. Schwarz, C. Wen [hep-th/1805.11111]

- Alfredo’s and Matt’s poster at SLAC next week

Thank you!