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Building Blocks: the S-Matrix for Three Massless Particles
Momentum conservation and Poincaré-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).


⇒



f (λ1, λ2, λ3)=
〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉
δ2×2(λ·λ̃)

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡
(
〈23〉〈31〉〈12〉

)
⊃λ̃

λ ≡
(
λ1

1 λ1
2 λ1

3
λ2

1 λ2
2 λ2

3

)

h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→
〈a b〉→O(ε)

O
(
ε−(h1+h2+h3)

)

−−−−−−→
[a b]→O(ε)

O
(
ε(h1+h2+h3)

)
f (λ1λ̃1, λ2λ̃2, λ3λ̃3)δ2×2

(
λ·λ̃
)

or

f (λ̃1, λ̃2, λ̃3)=
[2 3]4

[1 2] [2 3] [3 1]
δ2×2(λ·λ̃)

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2

λ̃ ≡
(
λ̃1̇

1 λ̃1̇
2 λ̃1̇

3

λ̃2̇
1 λ̃2̇

2 λ̃2̇
3

)
λ̃⊥≡

(
[23] [31] [12]

)
⊃λ
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Momentum conservation and Poincaré-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).


⇒



f (λ1, λ2, λ3)

=
δ2×4

(
λ·η̃
)

〈1 2〉〈2 3〉〈3 1〉
δ2×2(λ·λ̃) ≡ A(2)

3

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡
(
〈23〉〈31〉〈12〉

)
⊃λ̃

λ ≡
(
λ1

1 λ1
2 λ1

3
λ2

1 λ2
2 λ2

3

)
h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→
〈a b〉→O(ε)

O
(
ε−(h1+h2+h3)

)

−−−−−−→
[a b]→O(ε)

O
(
ε(h1+h2+h3)

)
f (λ1λ̃1, λ2λ̃2, λ3λ̃3)δ2×2

(
λ·λ̃
)

or

f (λ̃1, λ̃2, λ̃3)

=
δ1×4

(
λ̃⊥·η̃

)
[1 2] [2 3] [3 1]

δ2×2(λ·λ̃) ≡ A(1)
3

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ̃ ≡
(
λ̃1̇

1 λ̃1̇
2 λ̃1̇

3

λ̃2̇
1 λ̃2̇

2 λ̃2̇
3

)
λ̃⊥≡

(
[23] [31] [12]

)
⊃λ

Amplitudes 2018 Summer School QMAP, University of California, Davis Part III: Stratifying On-Shell Cluster Varieties



The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Grassmannian Representations of On-Shell Functions
Iterative Construction of Grassmannian ‘On-Shell’ Varieties
Characteristics of Grassmannian Representations

Grassmannian Representations of Three-Point Amplitudes
In order to linearize momentum conservation at each three-particle vertex

,
(and to specify which of the solutions to three-particle kinematics to use)
we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:
allowing us to represent all on-shell functions in the form:
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C ≡



1 2 I

I’ 3 4
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1 w2 wI

)

0 0 00 0 0
(

1 0 b1
4
)

0 0 0 0 1 b2
4
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Constructing the Correspondence: Amalgamations & Bridges

Direct/Outer Products
( f1, f2) 7→ f1 × f2

(C1,C2) 7→ C1⊕C2⊂G(k1+k2, n1+n2)
(Ω1,Ω2) 7→ Ω1 ∧ Ω2 (d1, d2) 7→d1+d2

Amalgamation: Gluing Legs (A,B)

f 7→ f ′ ci 7→ ci ∩ (cA+cB)⊥

C 7→ C/(cA+cB)⊂G(k−1, n−2)
Ω 7→ Ω/vol(GL(1)) d 7→d−1

Adding a ‘Bridge’ to Legs (A,B)

f 7→ f ′ cB 7→ cB+α cA

C 7→ C′⊂G(k, n)
Ω 7→ Ω ∧ dα/α d 7→d+1

C ≡



1 2 I

I’ 3 4

(
1 w2 wI

)

0 0 00 0 0
(

1 0 b1
4
)

0 0 0 0 1 b2
4



C ≡
(1 2 3 4

1 0 0 0
0 0 1 0

)

fΓ≡δ2(λ̃1)δ2(λ2)δ2(λ̃3)δ2(λ4)fΓ≡
∫

ΩC δk×2(C·λ̃)δ2×(n−k)
(
λ·C⊥

)
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Construction via ‘Boundary Measurements’
A more direct way to construct C(α) is via boundary measurements:

Ω ≡ dα1

α1
∧· · ·∧ dα9

α9

×det
(
1 Adj

)N−4

C(α)

≡


c1 c2 c3 c4 c5 c6

α5(1+α8) α2 α6 α7 α8 1 0 0
α1 α5 α1 α2+α4 α4 α7 0 1 0
α5 α9 α3 α4 α7(α3α4+α6α9) 0 0 1
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General Characteristics of the Correspondence

fΓ≡
∫

ΩC δk×2(C·λ̃)δ2×(n−k)
(
λ·C⊥

)

General Characteristics
n: the number of external legs

k: the number of ‘sources’: 2nB+nW−nI (trivalent)

d: the number of coordinates C(~α): 2nV−nI (trivalent); n+nI−nV (general)

number of δ-functions (beyond momentum conservation) is always: 2n−4

(notice that when k=2 (MHV), the constraints always require that C 7→C∗=λ)

recall that dim(G(k, n))=k(n−k);

and so if d>k(n−k), some of the coordinates must be degenerate

Definition: a diagram is called reduced if d(Γ)=dim(C)

the number of reduced diagrams is (trivially) finite for fixed n, k, d
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The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Application: Classifying On-Shell Functions for k=2 (MHV)
For k=2 and n̂δ=0, reduced diagrams correspond to top-dimensional varieties.

A simple exercise shows that for any such reduced diagram:
nB =(n−2)

and each blue vertex must connect to exactly three external legs

—through (arbitrary-length) chains of white vertices

We may label such diagrams by the triples, τ , of legs attached to blue vertices:



(1 2 3)

(2 5 6)
(3 4 6)
(4 5 1)

⇒C⊥(~α∗)≡


1 2 3 4 5 6

〈23〉〈31〉〈12〉 0 0 0

0 〈56〉 0 0 〈62〉〈25〉

0 0 〈46〉〈63〉 0 〈34〉

〈45〉 0 0 〈51〉〈14〉 0



fΓ≡
1

〈23〉〈31〉〈12〉〈56〉〈62〉〈25〉〈46〉〈63〉〈34〉〈45〉〈51〉〈14〉
δ2×4(C∗·η̃)δ2×2(C∗·λ̃)
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The Parke-Taylor formula for MHV amplitudes can be interpreted geometrically

as imposing a certain kind of ‘positivity’ among the λa variables:

PT(1, 2, 3, 4, 5, 6) ≡
δ2×4

(
λ· η̃

)
δ2×2

(
λ·λ̃
)

〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉

⇔

{
(1 3 4)
(3 2 4)

}
⇔




PT(1, 3, 2, 4)

f̃Γ =
∑
{σ∈(Sn/Zn)|∀τ ∈T:στ1<στ2<στ3}

PT(σ1, . . . , σn),
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Toward a Brute-Force Classification Beyond MHV (k>2)

Beyond MHV (k>2), we propose a brute-force approach:

construct all on-shell diagrams, and enumerate the functions that result
(not as trivial as it may at first appear...)

Some important technicalities to consider:
for n̂δ 6=0, we cannot compare on-shell functions (as mere ‘functions’)

and so merely ‘computing’ them (as functions of λ, λ̃) will not suffice
although the map from on-shell diagrams to on-shell varieties is direct
(and easy to implement)

, this map introduces specific sets of (cluster)
coordinates for each variety C(~α) which can obscure equivalences

it can be difficult to construct/identity diffeomorphisms between charts
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Classifying On-Shell Varieties: Definitions and Conjectures

Definitions:
A diagram is reduced if dim(C)=d(Γ)
Two varieties are isomorphic if there
exists a volume-preserving
diffeomorphism between them
The boundaries of a variety are those
of all reduced diagrams obtained by
removing edges from its diagram
The stratification of a variety is the
graph of the poset generated
by its iterated boundaries
Two varieties are called
equivalent if they are
related by relabeling
and/or parity

Conjectures: (all well-tested)
Two varieties are isomorphic iff
their diagrams are related by
‘square moves’/mergers
Two varieties are isomorphic iff
their boundaries are isomorphic
Two varieties are equivalent iff
their stratifications are
isomorphic as graphs
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4 λ1
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6
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Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f1≡
∮

(123)=0

Ω1 =
δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(234)(345)(456)(561)(612)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]



=
δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈23〉 [56] 〈3|4+5|6]s456〈1|5+6|4]〈12〉 [45]

f2≡
∮

(123)=0

Ω2 =
(235) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(136)(156)(234)(245)(256)(345)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


=

〈23〉 [64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈13〉 [45] 〈1|5+6|4]〈23〉 [56] 〈2|4+5|6]〈2|5+6|4]〈3|4+5|6]
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f1≡
∮

(123)=0

Ω1 =
δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(234)(345)(456)(561)(612)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]



=
δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈23〉 [56] 〈3|4+5|6]s456〈1|5+6|4]〈12〉 [45]

f2≡
∮

(123)=0

Ω2 =
(235) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(136)(156)(234)(245)(256)(345)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


=

〈23〉 [64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈13〉 [45] 〈1|5+6|4]〈23〉 [56] 〈2|4+5|6]〈2|5+6|4]〈3|4+5|6]

f3≡
∮

(123)=0

Ω4 =
(145) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(136)(156)(245)(345)(456)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]



=
〈1|4+5|6] δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉 [56] 〈13〉 [45] 〈1|5+6|4]〈2|4+5|6]〈3|4+5|6]s456
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f4≡
∮

(123)=0

Ω5 =
(135) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(145)(156)(236)(345)(356)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


=

〈13〉 [64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉 [56] 〈1|4+5|6]〈1|5+6|4]〈23〉 [45] 〈3|4+5|6]〈3|5+6|4]
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f4≡
∮

(123)=0

Ω5 =
(135) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(145)(156)(236)(345)(356)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


=

〈13〉 [64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉 [56] 〈1|4+5|6]〈1|5+6|4]〈23〉 [45] 〈3|4+5|6]〈3|5+6|4]

f5≡
∮

(123)=0

Ω9 =
(125) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(134)(156)(245)(256)(16(25)
⋂

(34))

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


=

〈12〉 [64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈13〉 [56] 〈1|5+6|4]〈2|4+5|6]〈2|5+6|4]
(
〈23〉 [56] 〈1|5+6|4] 〈12〉 [45] 〈3|4+5|6]

)
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f4≡
∮

(123)=0

Ω5 =
(135) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(145)(156)(236)(345)(356)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


=

〈13〉 [64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉 [56] 〈1|4+5|6]〈1|5+6|4]〈23〉 [45] 〈3|4+5|6]〈3|5+6|4]

f5≡
∮

(123)=0

Ω9 =
(125) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(134)(156)(245)(256)(16(25)
⋂

(34))

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


=

〈12〉 [64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈13〉 [56] 〈1|5+6|4]〈2|4+5|6]〈2|5+6|4]
(
〈23〉 [56] 〈1|5+6|4] 〈12〉 [45] 〈3|4+5|6]

)
C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]


f6≡

∮
(123)=0

Ω12 =
(134)2(456) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(145)(146)(156)(234)(345)(346)(356)

∣∣∣∣∣
C∗

=
〈13〉2s456 δ

3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉〈1|4+5|6]〈1|4+6|5]〈1|5+6|4]〈23〉〈3|4+5|6]〈3|4+6|5]〈3|5+6|4]
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f7≡
∮

(123)=0

Ω13 =
(145)2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(125)(134)(146)(156)(245)(345)(456)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]



=
〈1|4+5|6]2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉 [64] 〈13〉 [56] 〈1|4+6|5]〈1|5+6|4]〈2|4+5|6]〈3|4+5|6]s456
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f7≡
∮

(123)=0

Ω13 =
(145)2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(125)(134)(146)(156)(245)(345)(456)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]



=
〈1|4+5|6]2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉 [64] 〈13〉 [56] 〈1|4+6|5]〈1|5+6|4]〈2|4+5|6]〈3|4+5|6]s456

f8≡
∮

(14(23)
⋂

(56))=0

Ω16 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4(C(α)·η̃

)
δ3×2(C(α)·λ̃

)
δ2×3(λ·C⊥(α)

)

C(α)≡

 1 α6 α6 α7 0 0 α1
0 1 α5+α7 0 α2 α2 α4
α8 0 0 1 α3 α3 α4
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f7≡
∮

(123)=0

Ω13 =
(145)2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(125)(134)(146)(156)(245)(345)(456)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6
λ2

1 λ2
2 λ2

3 λ2
4 λ2

5 λ2
6

0 0 0 [56] [64] [45]



=
〈1|4+5|6]2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉 [64] 〈13〉 [56] 〈1|4+6|5]〈1|5+6|4]〈2|4+5|6]〈3|4+5|6]s456

f8≡
∮

(14(23)
⋂

(56))=0

Ω16 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4(C(α)·η̃

)
δ3×2(C(α)·λ̃

)
δ2×3(λ·C⊥(α)

)

C(α)≡

 1 α6 α6 α7 0 0 α1
0 1 α5+α7 0 α2 α2 α4
α8 0 0 1 α3 α3 α4



f9≡
∮

(14(23)
⋂

(56))=0

Ω18 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4(C(α)·η̃

)
δ3×2(C(α)·λ̃

)
δ2×3(λ·C⊥(α)

)

C(α)≡

 1 α5 α7 0 0 α1
0 1 α4 0 α2 α2 α6
α8 0 0 1 α3 α3 α6
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f10≡
∮

z = 0

Ω20 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4(C(α)·η̃

)
δ3×2(C(α)·λ̃

)
δ2×3(λ·C⊥(α)

)

C(α)≡

α6 α8 α1 1 α6 α1 α7 0
α8 0 0 1 α5 α4
α3 α2 0 0 α2 α7 1
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

Warm-Up: Classifying On-Shell Functions of G(2,n)
Definitions, Stratifications, and Conjectures
Application: the Stratification of On-Shell Varieties in G(3,6)

Enumeration of All (ten) ‘Leading Singularities’ of G(3,6)

f10≡
∮

z = 0

Ω20 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4(C(α)·η̃

)
δ3×2(C(α)·λ̃

)
δ2×3(λ·C⊥(α)

)

C(α)≡

α6 α8 α1 1 α6 α1 α7 0
α8 0 0 1 α5 α4
α3 α2 0 0 α2 α7 1
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

On-Shell Physics/Grassmannian Geometry Correspondence

fΓ≡
∏

i

(∑
hi,qi

∫
d3LIPSi

)∏
v
Av ≡

∫
ΩC δ(C, p, h)

Important Open Questions

(for math and physics)

• how many functions exist?

(how to name them?)

• what (functional) relations do they satisfy?
• what are their (infinite-dimensional) symmetries?

– do these extend to entire amplitudes?
• do loop-level recursion relations exist?

On-Shell Physics
• on-shell diagrams

– bi-colored, undirected, planarbi-colored, directed , planarbi-colored, undirected, non-planarbi-colored, directed , non-planarbi-colored, undirected, non-planar

• physical symmetries
– trivial symmetries (identities)

⇔
Grassmannian Geometry
•
{
strata C∈G(k, n), volume-form ΩC

}

– cluster variety

(?)

,
(∏

i
dαi
αi

)
×JN– 4positroid variety ,

(∏
i

dαi
αi

)
×JN– 4cluster variety

(?)

,
(∏

i
dαi
αi

)
×JN– 4

• volume-preserving diffeomorphisms
– cluster coordinate mutations

C⊥≡


α1 1 0 α2 0 0 0 0 0
0 0 α3 1 0 α4 0 0 0
0 0 0 α5 1 α6 0 0 0
0 0 0 0 0 1 0 α7 α8
0 0 0 0 0 α9 1 α10 0
α11 0 0 0 0 0 0 1 α12
0 α13 α14 0 0 0 0 0 1


ΩC ≡

(dα1

α1
∧· · ·∧ dα14

α14

)
×
(
1+α2α4α13(α8+α7α12)

)N– 4
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

On-Shell Physics/Grassmannian Geometry Correspondence

fΓ≡
∏

i

(∑
hi,qi

∫
d3LIPSi

)∏
v
Av ≡

∫
ΩC δ(C, p, h)

Important Open Questions

(for math and physics)

• how many functions exist?

(how to name them?)

• what (functional) relations do they satisfy?
• what are their (infinite-dimensional) symmetries?

– do these extend to entire amplitudes?
• do loop-level recursion relations exist?

On-Shell Physics
• on-shell diagrams

– bi-colored, undirected, planarbi-colored, directed , planarbi-colored, undirected, non-planarbi-colored, directed , non-planarbi-colored, undirected, non-planar

• physical symmetries
– trivial symmetries (identities)

⇔
Grassmannian Geometry
•
{
strata C∈G(k, n), volume-form ΩC

}

– cluster variety

(?)

,
(∏

i
dαi
αi

)
×JN– 4positroid variety ,

(∏
i

dαi
αi

)
×JN– 4cluster variety

(?)

,
(∏

i
dαi
αi

)
×JN– 4

• volume-preserving diffeomorphisms
– cluster coordinate mutations

C⊥≡


α1 1 0 α2 0 0 0 0 0
0 0 α3 1 0 α4 0 0 0
0 0 0 α5 1 α6 0 0 0
0 0 0 0 0 1 0 α7 α8
0 0 0 0 0 α9 1 α10 0
α11 0 0 0 0 0 0 1 α12
0 α13 α14 0 0 0 0 0 1


ΩC ≡

(dα1

α1
∧· · ·∧ dα14

α14

)
×
(
1+α2α4α13(α8+α7α12)

)N– 4
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

On-Shell Physics/Grassmannian Geometry Correspondence

fΓ≡
∏

i

(∑
hi,qi

∫
d3LIPSi

)∏
v
Av ≡

∫
ΩC δ(C, p, h)

Important Open Questions

(for math and physics)

• how many functions exist?

(how to name them?)

• what (functional) relations do they satisfy?
• what are their (infinite-dimensional) symmetries?

– do these extend to entire amplitudes?
• do loop-level recursion relations exist?

On-Shell Physics
• on-shell diagrams

– bi-colored, undirected, planarbi-colored, directed , planarbi-colored, undirected, non-planarbi-colored, directed , non-planarbi-colored, undirected, non-planar

• physical symmetries
– trivial symmetries (identities)

⇔
Grassmannian Geometry
•
{
strata C∈G(k, n), volume-form ΩC

}

– cluster variety

(?)

,
(∏

i
dαi
αi

)
×JN– 4positroid variety ,

(∏
i

dαi
αi

)
×JN– 4cluster variety

(?)

,
(∏

i
dαi
αi

)
×JN– 4

• volume-preserving diffeomorphisms
– cluster coordinate mutations

C⊥≡


α1 1 0 α2 0 0 0 0 0
0 0 α3 1 0 α4 0 0 0
0 0 0 α5 1 α6 0 0 0
0 0 0 0 0 1 0 α7 α8
0 0 0 0 0 α9 1 α10 0
α11 0 0 0 0 0 0 1 α12
0 α13 α14 0 0 0 0 0 1


ΩC ≡

(dα1

α1
∧· · ·∧ dα14

α14

)
×
(
1+α2α4α13(α8+α7α12)

)N– 4
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The Amalgamation of On-Shell Diagrams
Building-Up the Grassmannian Correspondence: On-Shell Varieties

The Classification of On-Shell (Cluster) Varieties

On-Shell Physics/Grassmannian Geometry Correspondence

fΓ≡
∏

i

(∑
hi,qi

∫
d3LIPSi

)∏
v
Av ≡

∫
ΩC δ(C, p, h)

Important Open Questions (for math and physics)

• how many functions exist?

(how to name them?)

• what (functional) relations do they satisfy?
• what are their (infinite-dimensional) symmetries?

– do these extend to entire amplitudes?
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