All-loop cut from the Amplituhedron

Cameron Langer, with
Jaroslav Trnka, Nima Arkani-Hamed and Akshay Yelleshpur Srikant

University of California, Davis
cklanger@ucdavis.edu

Amplituhedron

- L-loop amplituhedron $\mathcal{A}_{n, k, L}$ is space of all k-planes Y in $(k+4)$-dimensions and L 2-planes $(A B)_{i}=\mathcal{L}_{i}$ in the 4 -dimensional complement of Y such that

$$
\begin{equation*}
Y=C \cdot Z, \quad \mathcal{L}_{i}=D_{(i)} \cdot Z \tag{1}
\end{equation*}
$$

where $C \in G_{+}(k, n)$, the $D_{(i)} \in C^{\perp}$ are $2 \times n$ matrices satisfying extended positivity conditions with C and the external data $Z \in M_{+}(n, k+4)$ is positive: $\left\langle Z_{a_{1}} \cdots Z_{a_{k+m}}\right\rangle>0$ for $a_{1}<\cdots<a_{k+m}$

- The superamplitude is extracted from a canonical form $\Omega_{n, k, L}(\mathcal{Y}, Z)$ with logarithmic singularities on the boundaries of the amplituhedron
- To determine Ω we "triangulate" or "cellulate" the space by solving inequalities; we don't know how to triangulate the space for general n, k, L

Alternate characterization of $\mathcal{A}_{n, k, L}$

- There is another characterization of the amplituhedron in terms of projection and sign flips: for each $(k+2)$-plane $(Y A B)_{i}$ we can project through $(Y A B)_{i}$ or simply Y and we must end up in $m=2, k+2$ and $m=4, k$ amplituhedra, respectively
- Phrasing this in terms of sign flips, we have the conditions

$$
\begin{align*}
& \left\langle(Y A B)_{\ell} i i+1\right\rangle>0, \quad\langle Y i i+j j+1\rangle>0 \\
& \left\{\left\langle(Y A B)_{\ell} 12\right\rangle, \ldots,\left\langle(Y A B)_{\ell} 1 n\right\rangle\right\} \text { has } k+2 \text { sign flips, } \tag{2}\\
& \{\langle Y 1234\rangle, \ldots,\langle Y 123 n\rangle\} \text { has } k \text { sign flips, }
\end{align*}
$$

for each $\ell=1, \ldots, L$

- We will focus on $k=0$ or parity conjugate, for this the form depends only on L lines $(A B)_{\alpha}, \alpha=1, \ldots, L$
- After projection each $(A B)_{\alpha}$ must be in the 1-loop amplituhedron
- Mutual positivity condition between loops,

$$
\begin{equation*}
\left\langle(A B)_{\alpha}(A B)_{\beta}\right\rangle>0, \tag{3}
\end{equation*}
$$

for all pairs α, β.

- We don't know how to triangulate the space for general n, L, so look at particular cut of the amplitude where the problem factorizes and we can get L-loop information

L-loop intersecting cut

- We consider the cut where all lines intersect in a common point, say, A, so that

$$
\begin{equation*}
\left\langle(A B)_{\alpha}(A B)_{\beta}\right\rangle=0 \quad \text { for all pairs } \alpha, \beta \tag{4}
\end{equation*}
$$

- For $k=0$ the inequalities demand that all sequences of the form

$$
\begin{equation*}
\left\{\left\langle A B_{\alpha} 12\right\rangle, \ldots,\left\langle A B_{\alpha} 1 n\right\rangle\right\} \tag{5}
\end{equation*}
$$

have exactly 2 sign flips

- Instead of summing over different flip options we will consider the parity conjugate ($\overline{\mathrm{MHV}}$) problem where we simply require

$$
\begin{equation*}
\left\langle A B_{\alpha} i j\right\rangle>0 \quad \text { for all } i, j \tag{6}
\end{equation*}
$$

- The key feature of the cut: the form in B_{α} factorizes:

$$
\begin{equation*}
\Omega=\sum_{A} \Omega_{A} \prod_{\alpha=1}^{L} \Omega_{B_{\alpha}} \tag{7}
\end{equation*}
$$

Projecting through A

- Project through A, B_{α} is in region satisfying $\left\langle A B_{\alpha} i j\right\rangle>0$
- Drawing all such pictures for configurations of n-points we triangulate the space
- Naively the region triangulated by the inequalities $\left\langle A B_{\alpha} i j\right\rangle>0$ could be anything from a triangle to an n-gon; however demanding consistency with positive data kills all configurations except triangles in B_{α} !
\Longrightarrow the form is given by all triangles in B_{α} along with corresponding forms in A for all configurations consistent with the inequalities+positivity

Bootstrapping the form at L-loops

- Bootstrap L-loops directly from 2-loops; if we know the answer at $L=2$ expressed as a sum of triangles, it lifts directly to any L
- For MHV the 2-loop integrand is a sum of double-boxes and (parity-conjugated) penta-boxes and double-pentagons; by taking cuts in B_{α} of this result we isolate the coefficients of triangles

For triangles $(i-1 i)-(i i+1)-(i+1 i+2)$ the geometry in A is a tetrahedron

$$
\begin{equation*}
\frac{\langle i-2 i-1 i i+1\rangle\langle i-1 i i+1 i+2\rangle\langle i i+1 i+2 i+3\rangle}{\langle A i-2 i-1 i\rangle\langle A i-1 i i+1\rangle\langle A i i+1 i+2\rangle\langle A i+1 i+2 i+3\rangle} \prod_{\alpha} \frac{\langle A i-1 i i+1\rangle\langle A i i+1 i+2\rangle}{\left\langle A B_{\alpha} i-1 i\right\rangle\left\langle A B_{\alpha} i i+1\right\rangle\left\langle A B_{\alpha} i+1 i+2\right\rangle} . \tag{8}
\end{equation*}
$$

For triangles $(i-1 i)-(i i+1)-(j j+1)$ the geometry in A is a cyclic polytope

$$
\begin{equation*}
\frac{\langle A i j j+1\rangle\langle i-2 i-1 i i+1\rangle\langle i-1 i i+1 i+2\rangle\langle j-1 j j+1 j+2\rangle}{\langle A i-2 i-1 i\rangle\langle A i-1 i i+1\rangle\langle A i i+1 i+2\rangle\langle A j-1 j j+1\rangle\langle A j j+1 j+2\rangle} \prod_{\alpha} \frac{\langle A i-1 i i+1\rangle\langle A i j j+1\rangle}{\left\langle A B_{\alpha} i-1 i\right\rangle\left\langle A B_{\alpha} i i+1\right\rangle\left\langle A B_{\alpha} j j+1\right\rangle} . \tag{9}
\end{equation*}
$$

For triangles $(i i+1)-(j j+1)-(k k+1)$ the geometry is an octahedron

$$
\begin{align*}
& \frac{\langle A(i i+1) \cap(A j j+1) k k+1\rangle\langle i-1 i i+1 i+2\rangle\langle j-1 j j+1 j+2\rangle\langle k-1 k k+1 k+2\rangle}{\langle A i-1 i i+1\rangle\langle A i i+1 i+2\rangle\langle A j-1 j j+1\rangle\langle A j j+1 j+2\rangle\langle A k-1 k k+1\rangle\langle A k k+1 k+2\rangle} \\
& \times \prod_{\alpha} \frac{\langle A(i i+1) \cap(A j j+1) k k+1\rangle}{\left\langle A B_{\alpha} i i+1\right\rangle\left\langle A B_{\alpha} j j+1\right\rangle\left\langle A B_{\alpha} k k+1\right\rangle} . \tag{10}
\end{align*}
$$

Form at n-points

The form at n-points is given by summing over all possible triangles,

$$
\begin{align*}
\Omega= & \frac{1}{2} \sum_{i<j<k} \frac{\langle A(i i+1) \cap(A j j+1) k k+1\rangle\langle i-1 i i+1 i+2\rangle\langle j-1 j j+1 j+2\rangle\langle k-1 k k+1 k+2\rangle}{\langle A i-1 i i+1\rangle\langle A i i+1 i+2\rangle\langle A j-1 j j+1\rangle\langle A j j+1 j+2\rangle\langle A k-1 k k+1\rangle\langle A k k+1 k+2\rangle} \\
& \times \prod_{\alpha} \frac{\langle A(i i+1) \cap(A j j+1) k k+1\rangle}{\left\langle A B_{\alpha} i i+1\right\rangle\left\langle A B_{\alpha} j j+1\right\rangle\left\langle A B_{\alpha} k k+1\right\rangle} . \tag{11}
\end{align*}
$$

- We checked this through $n=9$ points against the local expansion at two-loops, and are working on n-point proof by comparing on cuts
- Outlook: how to lift this cut to $\left\langle(A B)_{\alpha}(A B)_{\beta}\right\rangle \neq 0$? Is there a form which naturally descends to this sum-of-triangles on the intersecting cut?

Thank you for your 4 minutes!

