Higher permutohedra at one-loop

Nick Early

University of Minnesota

June 12, 2018

Outline

- Objectives: (1) sketch a new interpretation of Parke-Taylor factors using an algebra of permutohedral tilings \mathcal{V}^{n}, and (2) state basic but essential results about the interpretation.
- Theorem[E]: \mathcal{V}^{n} is generated using Minkowski sums of embedded trivalent graphs. Any triangulation of an n-gon with a given cyclic vertex ordering defines a product of trivalent graphs; this product is independent of the triangulation!
- A paper describing the combinatorial framework is in preparation.
- Some back-history: Ph.D. thesis on symmetric group representations of generalized permutohedra; 1712.08520 (detailed study of characterisic functions of permutohedral cones, as plates), 1804.05460 (generalized permutohedra in the kinematic space).
- Constructing the bridge: define $x_{i j}=x_{i}-x_{j}$, set $\sigma=(1,2, \ldots, n)$; put

$$
\operatorname{PT}(\sigma)(x)=\frac{1}{x_{12} x_{23} \cdots x_{n 1}}
$$

- Setting $x_{i}=e^{-\varepsilon y_{i}}$, where ε is regarded as a formal dilation parameter, after the naive transformation $y_{i} \mapsto y_{i}-\frac{1}{n} \sum_{j=1}^{n} y_{j}$ we have...

$$
\operatorname{PT}(\sigma)(x) \mapsto \frac{x_{1} \cdots x_{n}}{x_{12} x_{23} \cdots x_{n 1}}=\frac{e^{-\varepsilon\left(y_{1}+\cdots+y_{n}\right)}}{e^{-\varepsilon y_{12}} e^{-\varepsilon y_{23} \cdots e^{-\varepsilon y_{n 1}}} ~}
$$

- Taking the first two nonzero terms in the series expansion in ε we get:

$$
\operatorname{PT}(\sigma)(y) \varepsilon^{-n}+\frac{1}{12} \mathrm{PT}_{\mathcal{L}}(\sigma)(y) \varepsilon^{-(n-2)}+\cdots,
$$

where the coefficient of $\varepsilon^{-(n-2)}$ is the elementary symmetric function

$$
\mathrm{PT}_{\mathcal{L}}(\sigma)(y)=\sum_{1 \leq i<j \leq n} \frac{1}{y_{12} \cdots \widehat{y_{i, i+1}} \cdots \widehat{y_{j, j+1}} \cdots y_{n 1}}
$$

Algebras of Permutohedral Cones

- We now interpret $\mathrm{PT}_{\mathcal{L}}(\sigma)$ in terms of an algebra \mathcal{V}^{n} of permutohedra...
- Denote $u_{i j}=y_{i j}^{-1}$ and set(!) $v_{i j k}=u_{i j}+u_{j k}+u_{k i}$.
- These satisfy some relations:

Antisymmetry: $u_{i j}=-u_{j i}$ and $v_{i j k}=v_{j k i}=-v_{i k j}$ Linear straightening: $v_{i j k}-v_{j k \ell}+v_{k \ell i}-v_{\ell i j}=0$
"Jacobi:" $u_{i j} u_{j k}+u_{j k} u_{k i}+u_{k i} u_{i j}=0, v_{i j k} v_{i k \ell}+v_{i k \ell} v_{i \ell j}+v_{i \ell j} v_{i j k}=0$.

- Proposition[E]: modulo the ideal generated by $u_{i j}^{2}$ we have the square move $v_{124} v_{234}=v_{123} v_{134}$.

Triangulations

Theorem[E]. To each triangulation $\mathcal{I}=\left\{\left(i_{1}, j_{2}, k_{1}\right), \ldots,\left(i_{n-2}, j_{n-2}, k_{n-2}\right)\right\}$, ($i_{a}<j_{a}<k_{a}$) of an n-gon with cyclically ordered vertices $(1, \ldots, n)$, define

$$
((\mathcal{I})):=v_{i_{1} j_{1} k_{1}} \cdots v_{i_{n-2} j_{n-2} k_{n-2}} .
$$

Then, (1) modulo the ideal generated by the $u_{i j}^{2}$'s, ((I)) is independent of the triangulation, and in fact $((\mathcal{I}))=\mathrm{PT}_{\mathcal{L}}(1,2, \ldots, n)$. (2) There is a canonical basis for \mathcal{V}^{n} with graded dimension the Stirling numbers of the first kind.

Example:

$$
\begin{gathered}
v_{123} v_{134}=\left(u_{12}+u_{23}+u_{31}\right)\left(u_{13}+u_{34}+u_{41}\right) \\
=u_{12} u_{23}+u_{12} u_{34}+u_{12} u_{41}+u_{23} u_{34}+u_{23} u_{41}+u_{34} u_{41}
\end{gathered}
$$

Sketch of Proof of (1). Use $\exp \left(u_{i j}\right)=1+u_{i j}$ and $\exp \left(v_{i j k}\right)=1+v_{i j k}$ modulo $u_{i j}^{2}$'s. Then, edges cancel additively!

Thank you!

Polytope for the Parke-Taylor factor PT(1, 2,3,4) (green), cut through by the six sheets for $\mathrm{PT}_{\mathcal{L}}(1,2,3,4)$ (white).

References

- Early, N. "Generalized permutohedra in the kinematic space." 1804.05460.
- Early, N. "Canonical Bases for Permutohedral Plates." 1712.08520.
- Early, N. "Permutohedral Blades." In preparation.
- He, Schlotterer, and Zhang. "New BCJ representations for one-loop amplitudes in gauge theories and gravity." 1706.00640.

