

Scattering amplitudes

JAROSLAV TRNKA Center for Quantum Mathematics and Physics at UC Davis

I. Particle Interactions

Our world is made of elementary particles.

- Constituents of matter:
 - Leptons (electrons), quarks.
- Mediate fundamental forces:

II. Quantum Field Theory

Theoretical framework for predicting scattering amplitudes.

Consistent with principle of special relativity and quantum mechanics.

• Locality: All interactions are pointlike.

Photons, gluons, W and Z bosons, gravitons.

Particle colliders

- * Particles accelerated and smashed together. * Result: a spray of new particles.
- * Analysis: discovery of particles and their properties.

In 2013 LHC discovered Higgs boson, last piece of the Standard Model.

Scattering process of elementary particles:

- Interaction of two or more particles.
- Fixed initial states, final states can vary.
- Fundamental laws reveal in these processes.

- * Describes a probability that a given scattering process happens.
- * It is a function of momenta and spins, $\mathcal{M}(p, s)$.

• Unitarity: For all possible outcomes of a scattering process the probabilities must sum to one, $\sum_{j} p_{j} = 1$.

Quantum field theory (QFT) is specified by a set of properties

* Particle content: each described by a field ϕ , ψ , A_{μ} .

 \star Symmetries of the theory.

 \star Interactions between fields given by Lagrangian \mathcal{L} .

 \star The strength of the interaction: coupling constants g. Paul Dirac, first pioneer of QFT

Perturbative expansion of scattering amplitudes

• Weak coupling: expansion around g = 0,

 $\mathcal{M} = g\mathcal{M}_1 + g^2\mathcal{M}_2 + g^3\mathcal{M}_3 + \dots$

- Each contribution \mathcal{M}_j can be calculated from the Lagrangian in perturbation theory.
- Graphical picture: **Feynman diagrams**.

Different orders in perturbation theory LO = leading order, 'N' stands for 'next'

III. Feynman Diagrams

Universal diagrammatic approach

- \star Simple organization of the perturbation expansion.
- \star Calculate scattering amplitude for a given process
 - = Rewrite it as a sum of building blocks

Calculation using Feynman diagrams

- Each term in the Lagrangian can be represented as a line or a vertex.
- Draw all possible diagrams from them.

* Incoming and outgoing particles fixed. * Rules for writing a formula for diagram.

- **IV. Hidden Structures**
- First evidence for hidden structures: six gluon scattering.
- Gluons confined inside the proton.
- At high energies the gluon scattering dominates.
- Calculated in 1985 for the new planned collider SSC.
- 220 Feynman diagrams, 100 pages of result.

www The final result shrinks to $\mathcal{M} =$ where $\langle ab \rangle$ are related to momenta.

Methods to calculate scattering amplitudes without Feynman diagrams.

Perturbative expansion = loop expansion of Feynman diagrams.

- Diagrams with internal loops: higher powers of g.
- They are higher order terms in perturbation theory.
- They should be suppressed in 'good' theories.

Richard Feynman

Great universal approach to quantum field theory!

Problem: Huge cancelations between diagrams, some properties **invisible**.

 \star Use consistency conditions to fix amplitudes.

 \star Amplitude = It is an unique function consistent with principles locality and unitarity.

Unitarity cut: amplitude factorizes * Powerful tools: unitarity cuts, recursion relations... to two pieces for special kinematics

Revolution in last 10 years: hidden mathematical structures.

• Huge advance in calculations using computers.

• New techniques: integrability, twistor strings, twistors.

• Geometric definition: amplitudes are **volumes**!

