Dual Conformal Structure Beyond The Planar Limit

QMAP Summer School 2018

UCLA The Mani L. Bhaumik Institute for Theoretical Physics

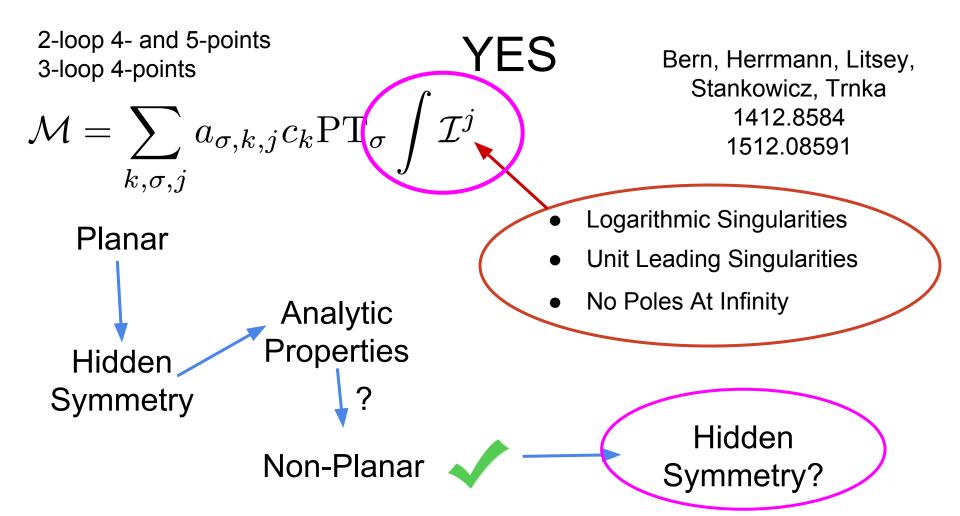
Michael Enciso

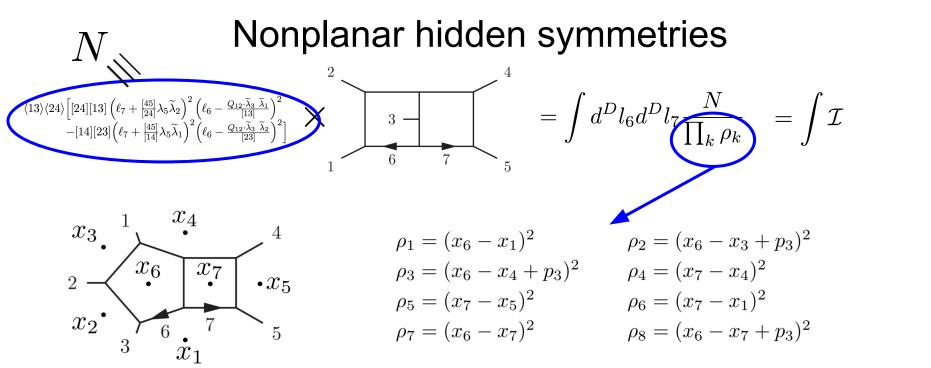
1709.06055 Z. Bern, ME, H. Ita, M. Zeng 1805.XXXX Z. Bern, ME, C.H. Shen, M. Zeng

Motivation

- Dual Conformal Symmetry (hidden)
- Integrability
- Yangian Symmetry
- Wilson Loop Duality
- Uniform Transcendentality
- Amplituhedron

Logarithmic Singularities


sector?


 $\mathcal{M}_{12...n} = \mathrm{PT}(123...n) \int \mathcal{I}$

Could these properties

hold in the non-planar

- Unit Leading Singularities
- No Poles At Infinity

$$\delta x_i = \frac{1}{2} x_i^2 b^\mu - (b \cdot x_i) x_i^\mu \Rightarrow \frac{\delta (x_i - x_j)^2}{(x_i - x_j)^2} = -b \cdot (x_i + x_j) = \frac{\delta (x_i - x_j \pm p_k)^2}{(x_i - x_j \pm p_k)^2} \quad \text{if} \ b^\mu \propto p_k^\mu$$

So all propagators transform as $\delta \rho_k \propto \rho_k$

Quite nontrivially, we also have $\delta N = \delta \left(\sum_{\substack{(13)(24) \begin{bmatrix} [24][13](\ell_7 + \frac{[45]}{24}]\lambda_5\tilde{\lambda}_2)^2(\ell_6 - \frac{Q_{12}\tilde{\lambda}_3\tilde{\lambda}_1}{(13)})^2}{-[14][23](\ell_7 + \frac{[45]}{14}]\lambda_5\tilde{\lambda}_1)^2(\ell_6 - \frac{Q_{12}\tilde{\lambda}_3\tilde{\lambda}_2}{(23)})^2} \right) \propto N$ with the proportionality factor being just that to make $\delta \mathcal{I} = -(D-4)[b \cdot (l_5 + l_6)]\mathcal{I}$ Thus, this is a hidden symmetry when D = 4.

In fact, all nonplanar 2-loop 5-pt integrands

 $\sum_{i=1}^{n_{1}^{(a)}} \sum_{i=1}^{n_{1}^{(a)}} \sum_{i=1}^{n_{1}^{(a)$

of nonplanar integrals:

Future

- Other topologies?
- More symmetries?
- Predict (parts of) amplitudes?
- Differential equations?

Thank you!