
×

×

×

×

Unifying Tree Super-Amplitudes in 6D:
Branes, SYM, and SUGRA

Matthew Heydeman1, Alfredo Guevara2,3, Sebastian Mizera2

1California Institute of Technology
2Perimeter Institute for Theoretical Physics

3CECs Valdivia

Amplitudes Summer School - June 12, 2018

1 / 16



Main ideas

Why 6D? The existence of chiral gauge theories in 6D
explains and unifies many properties of 4D supersymmetric
gauge theories.

Goal: Write down the complete tree-level S-matrix for
maximally supersymmetric gauge theories, gravity, and
effective field theory in six spacetime dimensions.

The main tool is to boost Witten’s twistor string from 4 → 6
dimensions. The n-particle amplitude is an integral over the
n-punctured Riemann sphere (possibly with other moduli M):

An ∼
∫

dnσdM
Vol(G)

〈String Correlation Function〉

We find a unified description of 6D theories in this form.
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Open Strings and Dp-branes

10D

(p + 1)-dim worldvolume

Quantization of open strings on Dirichlet p-brane → p + 1
dimensional vector multiplet. Maximal SUSY for spins ≤ 1.

For `s → 0, this is a free theory, but finite `s corrections give
supersymmetric Dirac-Born-Infeld theory (brane action):
S ∼ T

∫
dp+1x

√
−det(g + F )
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Multiple Branes → Super Yang-Mills

N Dp Branes

KLT
p + 1-dimensional

Maximal Supergravity

(Ex: N = 4 SYM → N = 8 SUGRA)

Scalar Vevs
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Twistor strings and rational maps

Witten’s observation: Scattering of N = 4 SYM (field theory)
computed exactly by a topological string theory! Open
B-Model on supertwistor space.
Amplitude supported on punctured D1 strings wrapping
curves, integrate correlator over punctures and moduli of
maps:

CP3

z

×
×

×
× (λα(z), λ̃α̇(z))

λα(z) =
∑d

k=0 ρ
α
k z

k

λ̃α̇(z) =
∑d̃

k=0 ρ̃
α̇
k z

k

d + d̃ = n − 2
d − d̃ = helicity violation

U(N) Open B-model
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A Six-Dimensional Surprise

In classifying super-Poincare and superconformal algebras, one
finds there are actually two different maximal theories of
spin-1 fields!

Chiral and anti-chiral pseudo-real spinors: (p, q) SUSY.
(1, 1)→ D5-brane and 6D SYM. But (2, 0)→ self-dual
(chiral) 2-form gauge field Bµν . H = dB = ∗H → no
candidate action!

11D

M5-brane
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The challenge:

The Witten twistor string relied crucially on the 4D spinor
helicity variables to construct maps. In 6D there are no
helicity sectors due to the little group.

The simplest 6D generalization turn out to be the single D5
and M5-brane EFTs. Maximal Yang-Mills and SUGRA are
harder due to the structure of the maps.

Apply to lower dimensions: 5D SYM/SUGRA and 4D
Coulomb Branch amplitudes
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Towards Rational Maps: Spinor Variables in 6D

Momentum vectors can be described as bispinors of
Spin(5, 1) ∼ SU∗(4), pµ ∼ pAB with A,B = 1, . . . , 4.

Little group = SU(2)× SU(2). We introduce λAia such that

pABi = 〈λAi λBi 〉 = εabλ
A,a
i λB,bi = λA+i λB−i − λA−i λB+

i .

Lorentz invariants:

〈λai λbj λckλdl 〉 = εABCDλ
A,a
i λB,bj λC ,ck λD,dl ,

E.g., 4 gluon scattering:

A(gaâ
1 , gbb̂

2 , g cĉ
3 , gdd̂

4 ) =
〈1a2b3c4d〉[1â2b̂3ĉ4d̂ ]

s12 s23
.
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3 , gdd̂

4 ) =
〈1a2b3c4d〉[1â2b̂3ĉ4d̂ ]
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D = 6 Rational Maps
Promote spinor variables to polynomials. Construct the null map:

z ∈ CP1 −→ pAB(z) = 〈ρA(z), ρB(z)〉

R5,1

z

×
×

×
× 6D Null Cone
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The most natural choice consistent with SL(2,C) is

ρA,a(z) =

d=d n
2
e−1∑

k=0

ρA,ak zk .

where for odd n we require the degenerate condition ρA,ad = ωAξa!
These maps are to be determined by the condition

pABi =
〈ρA(σi ), ρ

B(σi )〉∏
j 6=i σij

which also fixes the punctures {σi} in CP1 (i.e. Scattering
Equations)
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6D Amplitude
We are now ready to construct the amplitudes for our favorite 6D
theories by integrating over the moduli space of maps!

A6D =

∫ ∏
dσi dρk

Vol(G )(
∏
σij)2

n∏
i=1

δ6

(
pABi − 〈ρ

A(σi ), ρ
B(σi )〉∏

j 6=i σij

)
×ILIR

where Vol(G ) stands for the redundancies of the moduli space. For
odd n an enlarged symmetry group emerges. We find that the
delta functions completely localize the integration variables on
(n − 3)! points of the moduli.
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M5, D5-Branes and SYM
The integrands IL,R depend on the theory. They carry the
fermionic components of the amplitude. This are defined in
analogous way to the bosonic delta functions:

∆F =

∫ d∏
k=0

dχk

n∏
i=1

δ4

(
qAi −

〈ρA(σi ), χ(σi )〉∏
j 6=i σij

)

where qAi is now the supermomenta of the i-th particle.
We have half-integrands:

IN=(2,0) = Pf′An ×∆2
F , IN=(1,1) = Pf′An ×∆F ∆̃F

Iabelian = (Pf′An)2, Inon−abelian =
Tr(T a1T a2 · · ·T an)

σ12σ23 . . . σn1
.

where Pf′An is constructed from minors of (An)ij :=
pi ·pj
σij

12 / 16



Use the half-integrands as building blocks for amplitudes:∫
dµmaps IL IR IL IR

AD5−branes Iabelian IN=(1,1)

AM5−branes Iabelian IN=(2,0)

AN=(1,1)SYM Inon−abelian IN=(1,1)

? Inon−abelian IN=(2,0)

AN=(2,2)SUGRA IN=(1,1) IN=(1,1)

N = (2, 2) SUGRA is a double-copy of N = (1, 1) SYM

Perturbative amplitudes in non-abelian N = (2, 0) theory
should vanish; our formula computes some other non-abelian
object with N = (2, 0) on-shell supersymmetry
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We find new amplitudes for mixed theories using the half-integrand:

Isemi−abelian =
Tr(T a1T a2 · · ·T ak )

σ12σ23 · · ·σk1
(PfAk+1,...,n)2,

which interpolates between Iabelian when k = 0 and Inon−abelian
when k = n.

AD5−branes ⊕ SYM =

∫
dµmaps Isemi−abelian IN=(1,1)

gives an S-matrix of an interacting theory between the abelian and
non-abelian sectors of D5-branes.
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Even if you couldn’t care less about 6D, we have something for you:
Embed 4D massive momenta into 6D massless ones as follows

λA,a =

( mµα
〈µλ〉 λα

λ̃α̇ mµ̃α̇

[λ̃µ̃]

)
=⇒ pαα̇ = λαλ̃α̇ + m2 µαµ̃α̇

〈λµ〉[λ̃µ̃]
.

This gives us a formula for massive amplitudes in 4D for free!

We can do concrete calculations, for instance, 4-pt amplitude
of W-bosons and gluons:

A(W+
1 ,W

−
2 , g

−
3 , g

−
4 ) =

m2[1µ]2〈34〉2

[2µ]2s12(s23 −m2)
.

Leaves many applications for computing loop integrands
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If you want to know more check out:

“M5-Brane and D-Brane Scattering Amplitudes”
MTH, J.H. Schwarz, C. Wen [hep-th/1710.02170]

“The S Matrix of 6D Super Yang–Mills
and Maximal Supergravity from Rational Maps”
F. Cachazo, AG, MTH, SM, J.H. Schwarz, C. Wen
[hep-th/1805.11111]

Alfredo’s and Matt’s poster at SLAC next week

Thank you!
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