Scattering on plane waves from ambitwistor strings

S. NEKOVAR Mathematical Institute University of Oxford

arXiv:1706.08925 and arXiv:1708.09249 Joint work with T. Adamo, E. Casali, L. Mason

Amplitudes 2018 Summer School at UC Davis, June 2018

Oxford Mathematics

Mathematical Institute

Plane waves are highly symmetric spacetimes

This allows us to define an analogue of flat space momentum eigenstates for spin 0, 1 and 2 fields

Sandwich plane wave

$$ds^{2} = 2 du dv - H_{ab}(u) x^{a} x^{b} du^{2} - dx_{a} dx^{a}$$

$$R^{a}_{\ ubu} = -H^{a}_{b}(u)$$

Symmetries and momentum eigenstates

$$\mathrm{d}s^2 = 2\,\mathrm{d}U\,\mathrm{d}V - \gamma_{ij}(U)\,\mathrm{d}y^i\,\mathrm{d}y^j$$

The 2d-3 Killing vectors form a Heisenberg algebra, the obvious ones are

 $\partial_V, \quad \partial_i$

The wave equation $\Box \Phi = 0$ is solved by

$$\Phi(X) = \Omega(U) e^{i \phi_k} ,$$

$$\phi_k = k_0 v + k_i y^i + \frac{k_i k_j F^{ij}(U)}{2 k_0}$$

Spin 1 and 2 solutions can be generated by acting with a spin raising operator

イロト 不得 トイヨト イヨト

э

Scattering is well defined on plane wave spacetimes

Using the in and out states we show that time evolution is unitary and there is no particle creation

In the flat in and out regions, we have the standard QFT notion of in and out states

An analouge of the Klein-Gordon inner product can be defined using the foliation by hypersurfaces Σ_u of constant u:

$$\langle \Phi_1 | \Phi_2 \rangle = i \int_{\Sigma_u} dv d^{d-2} x \left(\Phi_1 \partial_v \bar{\Phi}_2 - \bar{\Phi}_2 \partial_v \Phi_1 \right)$$

Positive frequency states satisfy

$$\left\langle \Phi_1^{\text{in}} | \Phi_2^{\text{in}} \right\rangle = 2 k_0 \, \delta(k_0 - l_0) \, \delta^{d-2}(k_i - l_i) \\ \left\langle \Phi_1^{\text{out}} | \bar{\Phi}_2^{\text{in}} \right\rangle = 0.$$

Therefore the evolution is unitary and there is no particle creation as already found in [Gibbons 75]. This argument generalises to spin 1 and 2.

Oxford Mathematics

Ambitwistor strings provide the correct 3-point amplitudes

The calculations are much simpler than expected as all quantum corrections drop out

Ambitwistor strings are worldsheet theories that can be used to obtain QFT amplitudes

We calculated 3-point graviton amplitudes on a plane wave background using the curved space ambitwistor string [Adamo et al. 15]. The three point correlation function of vertex operators yields

$$\langle V_1(z_1) V_2(z_2) c(z_3) \tilde{c}(z_3) U_3(z_3) \rangle = \delta^{d-1} \left(\sum_{r=1}^3 k_r \right) \int \frac{\mathrm{d}u}{\sqrt[4]{|\gamma|}} \left[\left(\varepsilon_1 \cdot \varepsilon_3 K_1 \cdot \varepsilon_2 + \mathrm{cyclic} \right)^2 \right. \\ \left. - i \, k_{1\,0} \, k_{2\,0} \, k_{3\,0} \, \sigma^{ab} \mathcal{C}_a \mathcal{C}_b \right] \exp \left(i F^{ij} \sum_{s=1}^3 \frac{k_s \, i \, k_s \, j}{2k_{s\,0}} \right) ,$$

This agrees with the curved spacetime QFT calculation

BRST closure of the vertex operators fixes the external states

Similar calculations can be done for a gauge field on a plane wave gauge field background

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

These 3-point amplitudes obey a double copy relation

Gravity=YM 2 holds if one squares the background and the dynamical fields in the background

Is there a notion of double copy?

- Naïve attempt: Double copy gauge amplitude on same plane wave spacetime
- Fails!

э.

イロト 不得 トイヨト イヨト

 $\mathsf{Gravity}{=}\mathsf{Y}\mathsf{M}^2$ holds if one squares the background and the dynamical fields in the background

Is there a notion of double copy?

- Naïve attempt: Double copy gauge amplitude on same plane wave spacetime
- Fails!

Not surprising. We know

- Flat space amplitudes: gravity=ym²
- Various examples where backgrounds satisfy Gravity=YM²
- Therefore expect:

$$({\sf Gravity} + {\sf gravity}) = ({\sf YM} + {\sf ym})^2$$

This works!

- Subtlety: relating objects on flat space to objects on curved spacetime
- Careful prescription required, e.g. external momenta

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

7

э.

イロト 不得 トイヨト イヨト

Further questions

- Does the double copy relation hold for higher point amplitudes
- Higher point amplitudes from ambitwistor strings
- Different backgrounds

Thank you!