Soft Limits of Amplitudes and Supersymmetry

Shruti Paranjape

University of Michigan, Ann Arbor Leinweber Center for Theoretical Physics

Based on arXiv:1806.xxxx by H. Elvang, M. Hadjiantonis, C. R. T. Jones, SP

Amplitudes Summer School, UC Davis, June 12th

Broad Idea

- Goal: Properties of EFTs with
 - Supersymmetry
 - Low-energy Theorems

Example: $\mathcal{N} = 2 \mathbb{C}P^1$ Non-Linear Sigma Model

Method: Soft subtracted recursion relations ¹

Results:

- All *n*-point amplitudes are construtcible at leading order
- Symmetries emerge

¹arXiv:1509.03309, C. Cheung, K. Kampf, J. Novotny, C. Shen, J. Trnka

Construction of $\mathcal{N} = 2 \mathbb{C}P^1$ NLSM

The most general 4-point input superamplitude at leading order in the EFT is

$$\mathcal{A}_{4}(1_{\Phi^{+}}2_{\Phi^{-}}3_{\Phi^{+}}4_{\Phi^{-}}) = \frac{1}{\Lambda^{2}} \frac{[13]}{\langle 13 \rangle} \delta^{(4)}(\tilde{Q}) = \frac{1}{4\Lambda^{2}} \frac{[13]}{\langle 13 \rangle} \prod_{a=1}^{2} \sum_{i,j=1}^{4} \langle ij \rangle \eta_{ia} \eta_{ja}.$$

 $1/\langle 13 \rangle \Rightarrow$ some of the component amplitudes have poles \Rightarrow non-zero 3-point interactions.

4 + 3-point input $\xrightarrow{\text{Recursion}}$ all *n*-point amplitudes

Preservation of Symmetries by Recursion

- Supersymmetry
- $SU(2)_R$
- Additive conserved charges

	$U(1)_R$	$SU(2)_R$
Ζ	-4	1
Z Ž	4	1
ψ^{a+}	-1	2
ψ^{a+} ψ^{-}_{a}	1	2
γ^+	2	1
γ^{-}	-2	1
η_a	3	2
$\eta_{a} \ \Phi^{+}$	2	1
Φ-	4	1

Maximal *R*-symmetry group realized.

Shruti Paranjape

Emergent Symmetries

Use Ward identities of symmetry group A as on-shell input

Find that amplitudes satisfy A and B Ward identities

.

B is an emergent symmetry

Emergent symmetries in $\mathcal{N} = 2 \mathbb{C}P^1$ NLSM:

- $SU(2)_R$
- · Electric-Magnetic duality, i.e. vectors have chiral charge