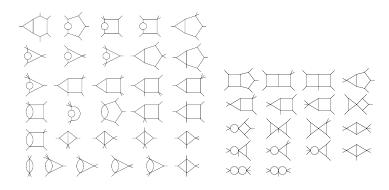
Two-loop five-point scattering in QCD

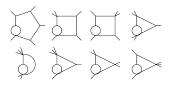
Christian Brønnum-Hansen

in collaboration with

Simon Badger, Bayu Hartanto, and Tiziano Peraro

$$A^{(2)}(1,2,3,4,5) = \int [dk_1][dk_2] \sum_{T} \frac{\Delta_{T}(\{k\},\{p\})}{\prod_{\alpha \in T} D_{\alpha}}$$
(1)


$$A^{(2)}(1,2,3,4,5) = \int [dk_1][dk_2] \sum_{T} \frac{\Delta_{T}(\{k\},\{p\})}{\prod_{\alpha \in T} D_{\alpha}}$$
(1)


$$\Delta\left(\bigcap\right) = \operatorname{Cut}\left(\bigcap\right) = \sum_{\text{internal states}} \prod_{k=1}^{7} A_3(\{k\}, \{p\}) \quad (2)$$

$$A^{(2)}(1,2,3,4,5) = \int [dk_1][dk_2] \sum_{T} \frac{\Delta_{T}(\{k\},\{p\})}{\prod_{\alpha \in T} D_{\alpha}}$$
(1)

$$\Delta\left(\Box\Box\right) = \operatorname{Cut}\left(\Box\Box\right) = \sum_{\text{internal states}} \prod_{k=1}^{7} A_3(\{k\}, \{p\}) \quad (2)$$

$$\Delta\left(\Box \smile\right) + \frac{\Delta\left(\Box \smile\right)}{D_{\text{off-shell}}} = \text{Cut}\left(\Box \smile\right)$$
 (3)

process	flavour	numerical	analytic
gg o gg	$(d_s-2)^0$	✓	✓
	$(d_s-2)^1$	✓	✓
	$(d_s - 2)^2$	\checkmark	✓
gg o ggg	$(d_s-2)^0$	✓	✓
	$(d_s-2)^1$	✓	(✓)
	$(d_s - 2)^2$	\checkmark	/
$egin{aligned} qar q & ightarrow gg \ qar q & ightarrow qar q \end{aligned}$	$(d_s-2)^0$	✓	✓
	$(d_s-2)^1$	✓	✓
	$(d_s - 2)^2$	\checkmark	\checkmark
$qar{q} o ggg$	$(d_s-2)^0$	✓	
	$(d_s-2)^1$	✓	
	$(d_s-2)^2$	✓	