Two-loop five-point massless QCD amplitudes within the IBP approach

Herschel A. Chawdhry

Cavendish Laboratory University of Cambridge

Amplitudes 2018 School, UC Davis 12th June 2018

work performed with M. A. Lim and A. Mitov

Herschel A. Chawdhry (Cambridge)

2-loop 5-point QCD using IBPs

Introduction

- Precise calculations of scattering amplitudes in gauge theories (such as QCD) require the evaluation of multi-loop integrals
- Multi-loop integrals are often evaluated using integration-by-parts (IBP) identities
- We introduce a new strategy for solving IBP identities and, as an example, apply it to the QCD scattering amplitude $q\bar{q} \rightarrow q'\bar{q}'g$ at 2 loops

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

UNIVERSITY OF

Integration-by-parts (IBP) identities

• Generic amplitude is a sum of Feynman integrals

• Integration-by-parts (IBP) identities:

$$\int d^d k_1 \dots d^d k_N \frac{d}{dk_i^{\mu}} \left(\frac{1}{\Pi_1^{n_1} \dots \Pi_P^{n_P}} \right) = 0,$$

• Hence, many linear relations between integrals

Integration-by-parts (IBP) identities (continued)

 Solve this system of equations to express all integrals in terms of a *small* basis of master integrals.

Can hence write original amplitude in terms of master integrals

 Note: the solution to the IBP system is also used to evaluate the master integrals themselves

Our strategy

 Derive projections of the IBP equations onto a single master integral by setting all other master integrals to be zero

 This simplifies the IBP equations because many non-master integrals only project onto a subset of the master integrals

Herschel A. Chawdhry (Cambridge)

2-loop 5-point QCD using IBPs

• • • • • • • • • • • •

Our strategy (continued)

 By solving these simplified equations, one obtains the projections of all integrals onto a single master integral

 The full solution to the original IBP equations is obtained by repeating for each of the other master integrals and summing the solutions

Herschel A. Chawdhry (Cambridge)

Results

- We have implemented our strategy in a private code and applied it to the QCD amplitude for $q\bar{q} \rightarrow q'\bar{q}'g$ at 2 loops
- Most complicated 2-loop 5-point topologies:

Conclusions

- Proposed a new strategy for solving the IBP identities
- Derived analytic expressions for all integral coefficients needed to construct any planar 2-loop 5-point massless QCD amplitude with quarks and/or gluons
- Future work:
 - Fast numerical evaluation of results for use in collider phenomenology
 - Compute reduction for non-planar topologies

Further reading - see our paper:

hep-ph/1805.09182