Benchmarking planar five-parton two-loop QCD amplitudes with numerical unitarity

Vasily Sotnikov

Amplitudes 2018 Summer School, Davis
$11^{\text {th }}$ June 2018
in collaboration with S. Abreau, F. Febres Cordero, H. Ita, B. Page,

University of Freiburg

Motivation

Precision era at the LHC

- No direct detection of new physics \Longrightarrow zoom in into data
- High order calculations, i.e. NNLO are required to achieve $\approx 1 \%$ level accuracy theory predictions for signal and background

State of the art

- Most of $2 \rightarrow 2$ processes are available at NNLO, but many interesting processes have >2 particles in the final state
- Handling IR divergences for >2 particles is very challenging, active research by many groups
- Huge effort towards computation of multi-scale Feynman integrals
- $2 \rightarrow 3$ two-loop amplitude frontier is being actively attacked and first simplest amplitudes have been benchmarked

We focus on integrand reduction of two-loop amplitudes with numerical unitarity method.

The Standard Approach to General Two-loop Amplitudes

Challenges:

- Large intermediate expressions
- Generating IBP relations is practically difficult

Two-loop numerical unitarity tries to avoid these issues:

- Only a restricted set of IBP relations is required for each topology
- Implicit numerical reduction to master integrals
- Full numerical framework avoids expression bloat

Two-Loop Reduction to Masters with Numerical Unitarity

1. Take an ansatz for loop-amplitude integrand, decomposing into master (M_{Γ}) and surface (S_{Γ}) integrands [ita '15].

$$
\mathcal{A}\left(\ell_{l}\right)=\sum_{\text {Topologies } \Gamma} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} \frac{c_{\Gamma, i} m_{\Gamma, i}\left(\ell_{l}\right)}{\prod_{\text {props } j} \rho_{j}} .
$$

2. For each topology build linear systems (cut equations) for master/surface coefficients $c_{\Gamma, i}$ by putting loop momenta on-shell.

3. Invert linear systems (e.g. by PLU or QR factorization) for given kinematics, D and D_{s}
4. Reconstruct rational functions of D and D_{s} by sampling \Rightarrow master coefficients directly from on-shell data.
5. Combine with master integrals \Rightarrow integrated amplitude

Status

The BH2 Project

We are constructing a $\mathrm{C}++$ framework for D-dimensional multi-loop numerical unitarity. We implement algorithms suitable for multi-precision floating point as well as exact arithmetics (finite fields \rightarrow rational numbers).

Collaboration

Samuel Abreu, Jerry Dormans, Fernando Febres-Cordero, Harald Ita, Matthieu Jaquier, Ben Page, Evgenij Pascual, VS

Results so far

- 4 point Yang-Mills amplitudes [arXiv:1703.05273]: reproduced analytic results from literature [Bern, De Freitas, Dixon '02]
- benchmark 5 point Yang-Mills amplitudes [arXiv:1712.03946] (see also [Badger et al., arXiv:1712.02229])
- Reproduced known N_{f}-contributions to 4-gluon amplitudes

Outlook

What's next?

- Extension to full QCD spectrum and beyond. Challenges:
- dim. reg with fermions in numerical framework [arXiv:1803.11127]
- no square roots (of scalar products) allowed for exact arithmetics (as in $\ell_{[D]}$)
- efficient colour decomposition with quarks
- Functional reconstruction of full kinematical dependence of integral coefficients
- Numerical stability and performance improvements \Rightarrow integrated virtual matrix elements
- Non-planar topologies: (multiple) non-coloured particles in the final state; sub-leading colour contributions
- Long term goal: combine with other bits of NNLO computation to deliver full NNLO precise predictions for multi-scale processes

Outlook

What's next?

- Extension to full QCD spectrum and beyond. Challenges:
- dim. reg with fermions in numerical framework [arXiv:1803.11127]
- no square roots (of scalar products) allowed for exact arithmetics (as in $\ell_{[D]}$)
- efficient colour decomposition with quarks
- Functional reconstruction of full kinematical dependence of integral coefficients
- Numerical stability and performance improvements \Rightarrow integrated virtual matrix elements
- Non-planar topologies: (multiple) non-coloured particles in the final state; sub-leading colour contributions
- Long term goal: combine with other bits of NNLO computation to deliver full NNLO precise predictions for multi-scale processes

Stay tuned!

