Benchmarking planar five-parton two-loop QCD amplitudes with numerical unitarity

Vasily Sotnikov Amplitudes 2018 Summer School, Davis 11th June 2018

in collaboration with S. Abreau, F. Febres Cordero, H. Ita, B. Page,

University of Freiburg

Motivation

Precision era at the LHC

- $\bullet\,$ No direct detection of new physics $\,\Longrightarrow\,$ zoom in into data
- High order calculations, i.e. NNLO are required to achieve $\approx 1\%$ level accuracy theory predictions for signal and background

State of the art

- Most of $2\to 2$ processes are available at NNLO, but many interesting processes have >2 particles in the final state
- Handling IR divergences for > 2 particles is very challenging, active research by many groups
- Huge effort towards computation of multi-scale Feynman integrals
- + $2\to 3$ two-loop amplitude frontier is being actively attacked and first simplest amplitudes have been benchmarked

We focus on integrand reduction of two-loop amplitudes with numerical unitarity method.

Challenges:

- Large intermediate expressions
- Generating IBP relations is practically difficult

Two-loop numerical unitarity tries to avoid these issues:

- Only a restricted set of IBP relations is required for each topology
- Implicit numerical reduction to master integrals
- Full numerical framework avoids expression bloat

Two-Loop Reduction to Masters with Numerical Unitarity

1. Take an ansatz for loop-amplitude integrand, decomposing into master (M_{Γ}) and surface (S_{Γ}) integrands [Ita '15].

$$\mathcal{A}(\ell_l) = \sum_{\text{Topologies } \Gamma} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} \frac{c_{\Gamma,i} m_{\Gamma,i}(\ell_l)}{\prod_{\text{props } i} \rho_j}.$$

 For each topology build linear systems (cut equations) for master/surface coefficients c_{Γ,i} by putting loop momenta on-shell.

- 3. Invert linear systems (e.g. by PLU or QR factorization) for given kinematics, D and D_s
- 4. Reconstruct rational functions of D and D_s by sampling \Rightarrow master coefficients directly from on-shell data.
- 5. Combine with master integrals \Rightarrow integrated amplitude

The BH2 Project

We are constructing a C++ framework for *D*-dimensional multi-loop numerical unitarity. We implement algorithms suitable for multi-precision floating point as well as exact arithmetics (finite fields \rightarrow rational numbers).

Collaboration

Samuel Abreu, Jerry Dormans, Fernando Febres-Cordero, Harald Ita, Matthieu Jaquier, Ben Page, Evgenij Pascual, VS

Results so far

- 4 point Yang-Mills amplitudes [arXiv:1703.05273]: reproduced analytic results from literature [Bern, De Freitas, Dixon '02]
- benchmark 5 point Yang-Mills amplitudes [arXiv:1712.03946] (see also [Badger et al., arXiv:1712.02229])
- Reproduced known N_f -contributions to 4-gluon amplitudes

Outlook

What's next?

- Extension to full QCD spectrum and beyond. Challenges:
 - dim. reg with fermions in numerical framework [arXiv:1803.11127]
 - no square roots (of scalar products) allowed for exact arithmetics (as in $\ell_{[D]}$)
 - efficient colour decomposition with quarks
- Functional reconstruction of full kinematical dependence of integral coefficients
- Numerical stability and performance improvements \Rightarrow integrated virtual matrix elements
- Non-planar topologies: (multiple) non-coloured particles in the final state; sub-leading colour contributions
- Long term goal: combine with other bits of NNLO computation to deliver full NNLO precise predictions for multi-scale processes

Outlook

What's next?

- Extension to full QCD spectrum and beyond. Challenges:
 - dim. reg with fermions in numerical framework [arXiv:1803.11127]
 - no square roots (of scalar products) allowed for exact arithmetics (as in $\ell_{[D]}$)
 - efficient colour decomposition with quarks
- Functional reconstruction of full kinematical dependence of integral coefficients
- Numerical stability and performance improvements \Rightarrow integrated virtual matrix elements
- Non-planar topologies: (multiple) non-coloured particles in the final state; sub-leading colour contributions
- Long term goal: combine with other bits of NNLO computation to deliver full NNLO precise predictions for multi-scale processes

Stay tuned!