Imperial College London

12th June 2018

Massless scattering amplitudes in 2d field theory

Nat Levine

based on work in progress with Arkady Tseytlin and Ben Hoare

Motivation

 Want to... classify integrability of sigma models on (1+1)d Minkowski space

$$\mathcal{L} = \partial_{\mu} X^{i} \partial_{\nu} X^{j} \eta^{\mu\nu} G_{ij}(X) + \partial_{\mu} X^{i} \partial_{\nu} X^{j} \epsilon^{\mu\nu} B_{ij}(X)$$

- Integrability = Lax connection \implies solvable EOM
- Very difficult!

Factorized scattering

Theorem:

The S-matrix of a relativistic massive integrable model has:

- No particle production
- Factorized scattering

[Parke, 80]

- What about massless models?! S-matrix not well defined
- Want to design formal 'S-matrix-type' object that satisfies the theorem. (Tree-level only!)
- Recent interest:

[Dubovsky, Flauger, Gorbenko, 12] [Cooper, Dubovsky, Gorbenko, Mohsen, Storace, 15] [Wulff, 18] [Gabai, Mazac, Shieber, Vieira, 18]

Integrable Examples:

S^n sigma model

$$\mathcal{L} = \frac{\partial y^i \partial y^i}{(1 + \frac{\lambda^2}{4} y^j y^j)^2} \qquad (i, j = 1, \dots, n)$$

Symmetric coset space: $S^n = SO(n+1)/SO(n) \longrightarrow$ integrable

Nappi model

$$\mathcal{L} = (\partial A)^2 + (\partial B)^2 + (\partial C)^2 + g \ \epsilon^{\mu\nu} A \ \partial_{\mu} B \ \partial_{\nu} C$$

Classically equivalent to $S^3 \cong SU(2)$ sigma model!

Lax connection constructed \longrightarrow integrable [Zakharov, Mikhailov, 78]

It was claimed to have particle production [Nappi, 80]

Goes against integrability intuition

Prescription ideas

Naive prescription

LSZ with:

- $1. \quad \text{external legs} \to \text{on-shell}$
- 2. $i\epsilon \rightarrow 0$

Result: Particle production in: • Nappi model – agrees with [Nappi, 80] • Sⁿ sigma model

These limits do not commute!

'Off-shell' prescription

LSZ with swapped order of limits:

- 1. $i\epsilon \rightarrow 0$
- 2. external legs \rightarrow on-shell

Final comments

- Off-shell prescription requires choices: how to take on-shell limit?
- Hope to find a universal choice that manifests integrability.
- We also expect T-duality to be manifest.

• In the future: hope to use this S-matrix to discover new constraints imposed by integrability.