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Infrared divergence

Consider a scattering amplitude 〈q1, q2|S|p1, p2〉 in QED.

Loops diagrams have infrared divergences.

These divergences exponentiate, and the amplitude vanishes in the limit where the

infrared regulator is removed:

〈q1, q2|S|p1, p2〉 = 0

Traditionally, this problem has been circumvented at the level of cross section via the

Bloch-Nordsieck method; the S-matrix elements are left ill-defined.
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Faddeev-Kulish states

An alternative approach is to replace Fock states with dressed (Faddeev-Kulish, FK)

states:

|p〉 → eR(p) |p〉 ,

where R(p) is an anti-Hermitian operator containing soft gauge particles.

〈out|S|in〉 〈out|e−RSeR|in〉

Amplitudes built using FK states (FK amplitudes) are free of infrared divergences.
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Large gauge symmetry

Gauge/gravity theories have asymptotic symmetries:

• Large gauge symmetry for QED.

• BMS symmetry for gravity.

Charges of asymptotic symmetries should be conserved:

〈out| [Q,S] |in〉 = 0.

However, Fock states do not conserve this charge. Infrared divergence reflects this

violation of charge conservation. [Kapec, Perry, Raclariu, Strominger ’17]

The FK states are charge eigenstates of the BMS supertranslation:

QeR(p) |p〉 = C(p)︸ ︷︷ ︸
∝ p

eR(p) |p〉 .

Charge conservation follows from energy-momentum conservation.

But there are more BMS eigenstates then there are FK states. For example,

eR(q) |p〉 , q 6= p,

is also a BMS eigenstate but not an FK state.

4



BMS Supertranslation Charge

An FK amplitude looks like

−𝑅(𝑞1) −𝑅(𝑞2)

+𝑅(𝑝1) +𝑅(𝑝2)

𝑝1 𝑝2

𝑞1 𝑞2

= 〈q1,q2| e−R(q1)−R(q2) S eR(p1)+R(p2) |p1,p2〉 .

The following amplitudes also conserve BMS charge:

−𝑅(𝑞1)
−𝑅(𝑞2) +𝑅(𝑝1)

+𝑅(𝑝2)

𝑝1 𝑝2

𝑞1
𝑞2

−𝑅(𝑞1)

−𝑅(𝑞2)

+𝑅(𝑝1) +𝑅(𝑝2)

𝑝1 𝑝2

𝑞1 𝑞2

〈f |e−R(q1)−R(q2)+R(p1)SeR(p2)|i〉 〈f |SeR(p1)+R(p2)−R(q1)−R(q2)|i〉

But an FK amplitude is infrared-finite. Are these also infrared-finite? [Kapec, Perry,

Raclariu, Strominger ’17] 5



Infrared-finiteness

From the formula for the leading term of loop diagrams [Choi, Kol, Akhoury ’17],

(−1)N
N+N′∏
r=1

∫
d3kr

(2π)3(2ωr)
fµνI

µν,ρrσr

Jρ1σ1···ρN+N′σN+N′

the net effect of “moving” a dressing from the in-state to the out-state can be

summarized in the following diagram:

−𝑅(𝑞1) −𝑅(𝑞2)

+𝑅(𝑝1) +𝑅(𝑝2)

𝑝1 𝑝2

𝑞1 𝑞2

−𝑅(𝑞1)

−𝑅(𝑞2) +𝑅(𝑝2)

+𝑅(𝑝1)

𝑝1 𝑝2

𝑞1
𝑞2

“Move” dressing

(−1) from

soft factor

(−1) from

different sign

⇒ no net effect on the leading term of the amplitude.

Since FK amplitude is infrared-finite, all amplitudes that conserve BMS

supertranslation charge are infrared-finite.
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Summary

To summarize the main points:

• Conventional S-matrix elements vanish due to infrared divergences. This is a

penalty for violating charge conservation of the asymptotic symmetries.

• FK amplitudes are well defined – i.e. they do not exhibit infrared divergence.

• There thus is a close connection between asymptotic symmetries and FK states:

The set of FK states is a subset of charge eigenstates that automatically conserve

the charge of asymptotic symmetry.

• However, any amplitude that conserves the charge (and therefore is non-zero) is

equivalent to the corresponding FK amplitude at the leading order.
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